Planarity criteria: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Planarity criteria''' --- критерии планарности. The following three planarity criteria are classical. ''' 1. Kuratowski's criterion'''. A g…») |
(нет различий)
|
Текущая версия от 04:47, 14 июня 2011
Planarity criteria --- критерии планарности.
The following three planarity criteria are classical.
1. Kuratowski's criterion. A graph [math]\displaystyle{ G }[/math] is planar if and only if it does not contain a subdivision of [math]\displaystyle{ K_{5} }[/math] or [math]\displaystyle{ K_{3,3} }[/math].
Another name is Pontrjagin-Kuratowski's criterion.
2. Whitney's criterion. A graph [math]\displaystyle{ G }[/math] is planar if and only if it has a combinatorial dual graph [math]\displaystyle{ G^{\ast} }[/math].
3. MacLane's criterion. A graph [math]\displaystyle{ G }[/math] is planar if and only if it has a cycle basis such that each edge of [math]\displaystyle{ G }[/math] belongs to at most two circuits of the basis.