Eccentricity of a vertex: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Eccentricity of a vertex''' --- эксцентриситет вершины. Let <math>d(x,y)</math> be the distance in a graph <math>G</math>. Then the '''ecce…»)
 
Нет описания правки
 
Строка 8: Строка 8:
equal to <math>diam(G)</math> is called a '''diametral chain'''.
equal to <math>diam(G)</math> is called a '''diametral chain'''.
==See also==
==See also==
*''Quasi-diameter, Quasi-radius''.
*''Quasi-diameter'',  
 
*''Quasi-radius''.

Текущая версия от 14:09, 6 апреля 2011

Eccentricity of a vertex --- эксцентриситет вершины.

Let [math]\displaystyle{ d(x,y) }[/math] be the distance in a graph [math]\displaystyle{ G }[/math]. Then the eccentricity [math]\displaystyle{ e(v) }[/math] of a vertex [math]\displaystyle{ v }[/math] is the maximum over [math]\displaystyle{ d(v,x), \; x \in V(G) }[/math]. The minimum over the eccentricities of all vertices of [math]\displaystyle{ G }[/math] is the radius [math]\displaystyle{ rad(G) }[/math] of [math]\displaystyle{ G }[/math], whereas the maximum is the diameter [math]\displaystyle{ diam(G) }[/math] of [math]\displaystyle{ G }[/math]. A pair [math]\displaystyle{ x, y }[/math] of vertices of [math]\displaystyle{ G }[/math] is called diametral iff [math]\displaystyle{ d(x,y) = diam(G) }[/math]. A chain in [math]\displaystyle{ G }[/math] which length is equal to [math]\displaystyle{ diam(G) }[/math] is called a diametral chain.

See also

  • Quasi-diameter,
  • Quasi-radius.