Аноним

Комбинаторно двойственный граф: различия между версиями

Материал из WEGA
нет описания правки
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Комбинаторно двойственный граф''' (''[[Combinatoricaly dual graph]]'') - для данного [[граф|графа]] <math>G</math> граф <math>G^{\ast}</math> такой, что существует взаимно однозначное соответствие между их множествами [[ребро|ребер]], при котором для любых соответствующих подмножеств ребер <math>Y</math> и <math>Y^{\ast}</math> ''[[коциклический ранг графа|коциклический ранг'' графа]] <math>G \setminus Y</math> равен коциклическому рангу <math>G</math> минус ''[[циклический ранг графа|циклический ранг]]'' части <math><Y^{\ast}></math> графа <math>G^{\ast}</math>, порожденной множеством ребер  <math>Y^{\ast}</math>.
'''Комбинаторно двойственный граф''' (''[[Combinatoricaly dual graph]]'') для данного [[граф|графа]] <math>\,G</math> граф <math>G^{\ast}</math> такой, что существует взаимно однозначное соответствие между их множествами [[ребро|ребер]], при котором для любых соответствующих подмножеств ребер <math>\,Y</math> и <math>Y^{\ast}</math> ''[[коциклический ранг графа|коциклический ранг'' графа]] <math>G \setminus Y</math> равен коциклическому рангу <math>\,G</math> минус ''[[циклический ранг графа|циклический ранг]]'' части <math><Y^{\ast}></math> графа <math>G^{\ast}</math>, порожденной множеством ребер  <math>Y^{\ast}</math>.
==Литература==
==Литература==
[Харари]
* Харари Ф. Теория графов. —  М.: Мир, 1973.