Правый вывод: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Создана новая страница размером '''Правый вывод''' (''Rightmost derivation'') - такой ''вывод'' <math>\alpha_0,</math>\alpha_1,<math>\ldots,</math>\...)
 
Нет описания правки
Строка 1: Строка 1:
'''Правый вывод''' (''Rightmost derivation'') -  
'''Правый вывод''' (''[[Rightmost derivation]]'') -  
такой ''вывод'' <math>\alpha_0,</math>\alpha_1,<math>\ldots,</math>\alpha_n<math> в
такой ''вывод'' <math>\alpha_0,\alpha_1,\ldots,\alpha_n</math> в
''контекстно-свободной грамматике'',
''[[контекстно-свободная грамматика|контекстно-свободной грамматике]]'',
что для любого </math>i<math> цепочка
что для любого <math>i</math> [[цепочка]]
</math>\alpha_i<math> получается из </math>\alpha_{i-1}<math> заменой в ней самого
<math>\alpha_i</math> получается из <math>\alpha_{i-1}</math> заменой в ней самого
правого нетерминала.
правого [[нетерминал|нетерминала]].
==Литература==
==Литература==
[Ахо-Ульман],  
[Ахо-Ульман],  

Версия от 17:07, 23 декабря 2009

Правый вывод (Rightmost derivation) - такой вывод [math]\displaystyle{ \alpha_0,\alpha_1,\ldots,\alpha_n }[/math] в контекстно-свободной грамматике, что для любого [math]\displaystyle{ i }[/math] цепочка [math]\displaystyle{ \alpha_i }[/math] получается из [math]\displaystyle{ \alpha_{i-1} }[/math] заменой в ней самого правого нетерминала.

Литература

[Ахо-Ульман],

[Касьянов/95],

[Касьянов-Поттосин]