Аноним

Невозможность асинхронного консенсуса: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «== Ключевые слова и синонимы == Консенсус без ожидания; согласование == Постановка задачи == Рассмотрим распределенную систему, состоящую из множества процессов, которые взаимодействуют между собой путем отправки и получения сообщений. Сеть представляе...»)
 
Нет описания правки
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Рассмотрим распределенную систему, состоящую из множества процессов, которые взаимодействуют между собой путем отправки и получения сообщений. Сеть представляет собой множество сообщений, где каждое сообщение адресовано некоторому процессу. Процесс – это машина состояний, которая может выполнять три вида шагов.
Рассмотрим распределенную систему, состоящую из множества ''процессов'', которые взаимодействуют между собой путем отправки и получения сообщений. Сеть представляет собой множество сообщений, где каждое сообщение адресовано некоторому процессу. Процесс – это машина состояний, которая может выполнять три вида ''шагов''.


• На шаге отправки (step) процесс помещает сообщение в сеть.
• На шаге ''отправки'' (step) процесс помещает сообщение в сеть.


• На шаге получения (receive) процесс A либо считывает и удаляет из сети сообщение, адресованное A, либо считывает выделенное нулевое значение, оставляя сеть без изменений. Если сообщение, адресованное A, помещено в сеть, и если A последовательно выполнит бесконечное число шагов получения, то в конце концов получит это сообщение.
• На шаге ''получения'' (receive) процесс A либо считывает и удаляет из сети сообщение, адресованное A, либо считывает выделенное ''нулевое'' значение, оставляя сеть без изменений. Если сообщение, адресованное A, помещено в сеть, и если A последовательно выполнит бесконечное число шагов получения, то в конце концов получит это сообщение.


• В состоянии вычисления (computation) процесс изменяет свое состояние без коммуникаций с каким-либо другим процессом.
• В состоянии ''вычисления'' (computation) процесс изменяет свое состояние без коммуникаций с каким-либо другим процессом.




Процессы являются асинхронными: не существует ограничений на их относительную скорость. Процессы могут претерпевать сбои: они могут просто остановиться и больше не делать никаких шагов. Далее рассматривается выполнение, в ходе которого сбой происходит не более чем у одного процесса.
Процессы являются ''асинхронными'': не существует ограничений на их относительную скорость. Процессы могут претерпевать ''сбои'': они могут просто остановиться и больше не делать никаких шагов. Далее рассматривается выполнение, в ходе которого сбой происходит не более чем у одного процесса.




В задаче о достижении консенсуса каждый процесс начинает работу с частного входного значения, общается с остальными, а затем останавливается со значением решения. Такие значения должны удовлетворять следующим свойствам:
В ''задаче о достижении консенсуса'' каждый процесс начинает работу с частного ''входного'' значения, общается с остальными, а затем останавливается со значением ''решения''. Такие значения должны удовлетворять следующим свойствам:


• Согласованность: значения решений всех процессов должны совпадать.
''Согласованность'': значения решений всех процессов должны совпадать.


• Допустимость: каждое значение решения должно быть некоторым значением процесса.
''Допустимость'': каждое значение решения должно быть некоторым значением процесса.


• Завершение: каждый процесс без сбоев должен принять решение за конечное число шагов.
''Завершение'': каждый процесс без сбоев должен принять решение за конечное число шагов.




Строка 27: Строка 27:


== Терминология ==
== Терминология ==
Без потери общности можно ограничиться бинарным консенсусом, у которого входные значения могут быть равны 0 или 1. Состояние протокола состоит из состояний процессов и мультимножества сообщений, проходящих по сети. Начальным состоянием является состояние протокола до того, как какой-либо процесс начал движение, а конечным – состояние протокола после завершения всех процессов. Значение решения в любом конечном состоянии представляет собой значение, принятое всеми процессами в этом состоянии.
Без потери общности можно ограничиться ''бинарным'' консенсусом, у которого входные значения могут быть равны 0 или 1. ''Состояние протокола' состоит из состояний процессов и мультимножества сообщений, проходящих по сети. ''Начальным состоянием'' является состояние протокола до того, как какой-либо процесс начал движение, а ''конечным'' – состояние протокола после завершения всех процессов. Значение решения в любом конечном состоянии представляет собой значение, принятое всеми процессами в этом состоянии.




Строка 33: Строка 33:




Бивалентное состояние протокола – это состояние, в котором конечное значение решения еще не фиксировано. Из любого бивалентного состояния существует выполнение, в котором конечное значение решения равно 0, и другое, в котором оно равно 1. Унивалентное состояние протокола – это состояние, в котором исход фиксирован. Каждое выполнение, начиная с унивалентного состояния, находит решение с одним и тем же значением. 1-валентное состояние протокола является унивалентным с конечным значением решения 1; аналогично для 0-валентного состояния.
''Бивалентное'' состояние протокола – это состояние, в котором конечное значение решения еще не фиксировано. Из любого бивалентного состояния существует выполнение, в котором конечное значение решения равно 0, и другое, в котором оно равно 1. ''Унивалентное'' состояние протокола – это состояние, в котором исход фиксирован. Каждое выполнение, начиная с унивалентного состояния, находит решение с одним и тем же значением. ''1-валентное'' состояние протокола является унивалентным с конечным значением решения 1; аналогично для ''0-валентного'' состояния.




Состояние протокола является критическим, если:
Состояние протокола является ''критическим'', если:


• оно бивалентно и
• оно бивалентно и
Строка 44: Строка 44:
== Основные результаты ==
== Основные результаты ==


Лемма 1. Каждый протокол консенсуса имеет бивалентное начальное состояние.
'''Лемма 1'''. Каждый протокол консенсуса имеет бивалентное начальное состояние.


Доказательство. Предположим от противного, что существует протокол консенсуса для (n + 1) потоков A0, …, An, в котором каждое начальное состояние является унивалентным. Обозначим за si начальное состояние, в котором процессы A,-,--- ;An имеют на входе 0, а A0 ... ; Aj-i – 1. Очевидно, что S0 является 0-валентным: все процессы имеют на входе 0, поэтому по условию допустимости все они должны прийти к решению 0. Если si является 0-валентным, то и si+1 тоже. Эти состояния отличаются только входными данными процесса Ai: 0 у si и 1 – у si+1. Любое выполнение, начинающееся с si, в котором Ai останавливается перед выполнением каких-либо шагов, неотличимо от выполнения, начинающегося с si+1, в котором Ai останавливается перед выполнением каких-либо шагов. Поскольку в первом случае процессы должны принять решение 0, во втором они должны принять решение 1. А поскольку существует одно исполнение, начинающееся с si+1, которое принимает решение 0, и поскольку согласно гипотезе si+1 унивалентно, то si+1 является 0-валентным. Отсюда следует, что состояние sn+1, в котором все процессы начинаются со входного значения 1, является 0-валентным, что противоречит условию.
Доказательство. Предположим от противного, что существует протокол консенсуса для (n + 1) потоков A0, …, An, в котором каждое начальное состояние является унивалентным. Обозначим за si начальное состояние, в котором процессы A,-,--- ;An имеют на входе 0, а A0 ... ; Aj-i – 1. Очевидно, что S0 является 0-валентным: все процессы имеют на входе 0, поэтому по условию допустимости все они должны прийти к решению 0. Если si является 0-валентным, то и si+1 тоже. Эти состояния отличаются только входными данными процесса Ai: 0 у si и 1 – у si+1. Любое выполнение, начинающееся с si, в котором Ai останавливается перед выполнением каких-либо шагов, неотличимо от выполнения, начинающегося с si+1, в котором Ai останавливается перед выполнением каких-либо шагов. Поскольку в первом случае процессы должны принять решение 0, во втором они должны принять решение 1. А поскольку существует одно исполнение, начинающееся с si+1, которое принимает решение 0, и поскольку согласно гипотезе si+1 унивалентно, то si+1 является 0-валентным. Отсюда следует, что состояние sn+1, в котором все процессы начинаются со входного значения 1, является 0-валентным, что противоречит условию.




Лемма 2. Каждый протокол консенсуса имеет критическое состояние.
'''Лемма 2'''. Каждый протокол консенсуса имеет критическое состояние.


Доказательство от противного. Согласно лемме 1, протокол имеет бивалентное начальное состояние. Запустим выполнение протокола в этом состоянии. Многократно выбираем процесс, следующий шаг которого оставляет протокол в бивалентном состоянии, и позволяем данному процессу сделать этот шаг. Либо протокол будет работать вечно, нарушая условие завершения, либо в конце концов перейдет в критическое состояние.
Доказательство от противного. Согласно лемме 1, протокол имеет бивалентное начальное состояние. Запустим выполнение протокола в этом состоянии. Многократно выбираем процесс, следующий шаг которого оставляет протокол в бивалентном состоянии, и позволяем данному процессу сделать этот шаг. Либо протокол будет работать вечно, нарушая условие завершения, либо в конце концов перейдет в критическое состояние.




Теорема 3 Не существует протокола консенсуса для асинхронной системы передачи сообщений, в которой один процесс может претерпеть сбой.
'''Теорема 3 Не существует протокола консенсуса для асинхронной системы передачи сообщений, в которой один процесс может претерпеть сбой.'''
 
Доказательство. Предположим от противного, что такой протокол существует. Будем выполнять протокол, пока он не достигнет критического состояния. Должны существовать два процесса A и B, такие, что следующий шаг A переводит протокол в 0-валентное состояние, а следующий шаг B переводит протокол в 1-валентное состояние.
Доказательство. Предположим от противного, что такой протокол существует. Будем выполнять протокол, пока он не достигнет критического состояния. Должны существовать два процесса A и B, такие, что следующий шаг A переводит протокол в 0-валентное состояние, а следующий шаг B переводит протокол в 1-валентное состояние.


4551

правка