Аноним

Эффективные методы множественного выравнивания последовательностей с гарантированными границами ошибок: различия между версиями

Материал из WEGA
м
(Новая страница: «== Ключевые слова и синонимы == Выравнивание нескольких строк; глобальная задача выравнивания нескольких строк == Постановка задачи == Множественное выравнивание последовательностей является важной задачей вычислительной биологии. Она применяется в т...»)
 
 
(не показано 14 промежуточных версий этого же участника)
Строка 1: Строка 1:
== Ключевые слова и синонимы ==
== Ключевые слова и синонимы ==
Выравнивание нескольких строк; глобальная задача выравнивания нескольких строк
Множественное выравнивание строк; глобальная задача выравнивания нескольких строк


== Постановка задачи ==
== Постановка задачи ==
Множественное выравнивание последовательностей является важной задачей вычислительной биологии. Она применяется в таких областях, как поиск высококонсервативных субрегионов в заданном наборе биологических последовательностей и вывод истории эволюции набора таксонов на основе связанных с ними биологических последовательностей (см., например, [6]). Был предложен ряд мер для оценки качества множественного выравнивания, однако до выхода работы Гасфилда ни для одной из этих мер не было известно эффективных методов вычисления оптимального выравнивания. В работе Гасфилда [ ] приведены два вычислительно эффективных алгоритма аппроксимации множественного выравнивания для двух мер с коэффициентом аппроксимации менее 2. Для одной из мер также получен рандомизированный алгоритм, который работает значительно быстрее и с высокой вероятностью выдает множественное выравнивание с малыми границами ошибки. В данной работе впервые были представлены аппроксимационные алгоритмы (с гарантированными границами ошибок) для этой задачи.
Множественное выравнивание последовательностей является важной задачей вычислительной биологии. Она применяется в таких областях, как поиск высококонсервативных субрегионов в заданном наборе биологических последовательностей и вывод истории эволюции набора таксонов на основе связанных с ними биологических последовательностей (см., например, [6]). Был предложен ряд мер для оценки качества множественного выравнивания, однако до выхода упомянутой работы Гасфилда ни для одной из этих мер не было известно эффективных методов вычисления оптимального выравнивания. В работе Гасфилда [5] приведены два вычислительно эффективных аппроксимационных алгоритма множественного выравнивания для двух мер с коэффициентом аппроксимации менее 2. Для одной из мер также получен рандомизированный алгоритм, который работает значительно быстрее и с высокой вероятностью выдает множественное выравнивание с малыми границами ошибки. В данной работе впервые были представлены аппроксимационные алгоритмы (с гарантированными границами ошибок) для этой задачи.




'''Нотация и определения'''
'''Нотация и определения'''


Пусть X и Y – две строки алфавита S. Парное выравнивание A строк X и Y отображает X, Y на строки X0, Y0, которые могут содержать пробелы обозначаемые '_', таким образом, что выполняется следующее: (1) jX0j = jY0j = I; (2) удаление пробелов из X0 и Y0 превращает их в X и Y, соответственно. Оценка выравнивания определяется как d(X0 ; Y0) = £?=i s(X0(i); Y0(i)), где X0(i) (и Y0(i)) обозначает i-й символ в X0 Y0), а s(a; b) при a; b 2 S [ '_0 – схема оценки на основе расстояния, удовлетворяющая следующим предположениям.
Пусть X и Y – две строки алфавита <math>\Sigma</math>. ''Парное выравнивание'' строк X и Y отображает X, Y на строки X', Y', которые могут содержать пробелы, обозначаемые '_', таким образом, что выполняется следующее: (1) |X'| = |Y'| = <math>\ell</math>; (2) удаление пробелов из X' и Y' превращает их в X и Y, соответственно. Оценка выравнивания определяется как <math>d(X', Y') = \sum_{i = 1}^{\ell} s(X'(i), Y'(i))</math>, где X'(i) (и Y'(i)) обозначает i-й символ в X' Y'), а s(a, b), где <math>a, b \in \Sigma \cup</math>'_', – схема оценки на основе расстояния, удовлетворяющая следующим предположениям:
1. s('_0;‘_0) = 0;
 
1. s('_', '_') = 0;
 
2. неравенство треугольника: для любых трех символов, x, y, z выполняется соотношение
2. неравенство треугольника: для любых трех символов, x, y, z выполняется соотношение
s(x;z) < s(x;y) + s(y;z)).
s(x, z) <math>\le</math> s(x, y) + s(y, z).
Обозначим за / = X1 ; X 2... ; Xk множество k > 2 строк алфавита £. Множественное выравнивание A этих k строк отображает Xi, Xi,... , Xk на X[, X'2,... Xk, которые могут содержать пробелы таким образом, что выполняется следующее: (1) \X[ \ = jX2 0 j = ■ ■ = jX0k j = I; (2) удаление пробелов из элемента Xi' превращает его в Xi для всех 1 < i < k. Множественное выравнивание A может быть представлено в виде матрицы k x I.
 
 
Обозначим за <math>\chi = X_1, X_2, ..., X_k</math> множество k > 2 строк алфавита <math>\Sigma</math>. ''Множественное выравнивание'' A этих k строк отображает <math>X_1, X_2, ..., X_k</math> на <math> = X'_1, X'_2, ..., X'_k</math>, которые могут содержать пробелы таким образом, что выполняется следующее:
 
(1) <math>|X'_1| = |X'_2| = |X'_k| = \ell</math>;
 
(2) удаление пробелов из элемента <math>X'_i</math> превращает его в <math>X_i</math> для всех <math>1 \le i \le k</math>. Множественное выравнивание A может быть представлено в виде матрицы <math>k \times \ell</math>.




'''Мера «Сумма пар» (SP)'''
'''Мера «Сумма пар» (SP)'''


Оценка множественного выравнивания A, обозначаемая SP(A), определяется как сумма оценок парных выравниваний, индуцированных A, т. е. Pi<j d{X\, Xp =.
Оценка множественного выравнивания A, обозначаемая SP(A), определяется как сумма оценок парных выравниваний, индуцированных A, т. е. <math>\sum_{i < j} d(X'_i, X'_j) = \sum_{i < j} \sum^{\ell}_{p = 1} s(X'_i[p], X'_j[p])</math>, где <math>1 \le i \le j \le k</math>.


   
   
Задача № 1. Множественное выравнивание последовательностей с минимальным значением оценки SP
'''Задача № 1'''. Множественное выравнивание последовательностей с минимальным значением оценки SP


Дано: набор из k строк, схема оценки s.
'''Дано''': набор из k строк, схема оценки s.


Требуется: найти множественное выравнивание A этих k строк с минимальной оценкой SP(A).
'''Требуется''': найти множественное выравнивание A этих k строк с минимальной оценкой SP(A).




''' Мера «Выравнивание деревьев» (TA)'''
''' Мера «Выравнивание деревьев» (TA)'''


В данном случае множественное выравнивание выводится из эволюционного дерева. Пусть задан набор / из k строк, /' 2 /-. Эволюционное дерево Tx/ для набора / представляет собой дерево с не менее чем k узлами, в котором существует соответствие один-к-одному между узлами дерева и строками в /'. Пусть Xu 0 /' – строка для узла u. Оценка Tx/, обозначаемая TA(TX/), определяется как ~Y^,e=<u v\ D(Xu0;Xv0), где e – ребро в Txi, а D(X0u;Xv0) обозначает оценку оптимального парного выравнивания для Xu0 и Xv0. Аналогичным образом, множественное выравнивание / согласно мере TA также может быть представлено матрицей j/'| x I, где \x'\ > k, с оценкой, определяемой как Pe=(u;v) d(Xu0;Xv0)(e – ребро в Txr), аналогично множественному выравниванию по мере SP, где оценка является суммированием оценок выравнивания всех пар строк. В рамках меры TA, исходя из того, что всегда можно построить матрицу |/'| x I такую, что d(X0u;Xv0) = D(Xu0;Xv0) для всех e = (u; v) в T%r, а нас обычно интересует нахождение множественного выравнивания с минимальным значением TA, в определении TA{TX<) вместо d(X0u;Xv0) используется D(Xu0;Xv0).
В данном случае множественное выравнивание выводится из эволюционного дерева. Пусть задан набор <math>\chi</math> из k строк, положим <math>\chi' \supseteq \chi</math>. Эволюционное дерево <math>T{\chi'}</math> для набора <math>\chi</math> представляет собой дерево с не менее чем k узлами, причем существует взаимно-однозначное соответствие между узлами дерева и строками в <math>\chi'</math>. Пусть <math>X'_u \in \chi'</math> – строка для узла u. Оценка <math>T_{\chi'}</math>, обозначаемая <math>TA(T_{\chi'})</math>, определяется как <math>\sum_{e = (u, v)} D(X'_u, X'_v)</math>, где e – ребро в <math>T_{\chi'}</math>, а <math>D(X'_u, X'_v)</math> обозначает оценку оптимального парного выравнивания для <math>X'_u</math> и <math>X'_v</math>. Аналогичным образом, множественное выравнивание <math>\chi</math> согласно мере TA также может быть представлено матрицей <math>| \chi'| \times \ell</math>, где <math>| \chi' | \ge k</math>, с оценкой, определяемой как <math>\sum_{e = (u, v)} d(X'_u, X'_v)</math> (e – ребро в <math>T_{\chi'}</math>), аналогично множественному выравниванию по мере SP, где оценка является суммированием оценок выравнивания всех пар строк. В рамках меры TA, исходя из того, что всегда можно построить матрицу <math>| \chi'| \times \ell</math> такую, что <math>d(X'_u, X'_v) = D(X'_u, X'_v)</math> для всех e = (u, v) в <math>T_{\chi'}</math>, а нас обычно интересует нахождение множественного выравнивания с минимальным значением TA, в определении <math>TA(T_{\chi'})</math> вместо <math>d(X'_u, X'_v)</math> используется <math>D(X'_u, X'_v)</math>.




Задача № 2. Множественное выравнивание последовательностей с минимальным значением оценки ТА
'''Задача № 2'''. Множественное выравнивание последовательностей с минимальным значением оценки ТА


Дано: набор из k строк, схема оценки s.
'''Дано''': набор из k строк, схема оценки s.


Требуется: найти эволюционное дерево Tx для этих k строк с минимальной оценкой TA(T).
'''Требуется''': найти эволюционное дерево T для этих k строк с минимальной оценкой TA(T).


== Основные результаты ==
== Основные результаты ==


Теорема 1. Пусть A* – оптимальное множественное выравнивание заданных k строк с минимальной оценкой SP. Предложен алгоритм аппроксимации (метод центральной звезды), который позволяет получить множественное выравнивание A, такое, что:
'''Теорема 1. Пусть A* – оптимальное множественное выравнивание заданных k строк с минимальной оценкой SP. Предложен алгоритм аппроксимации (метод центральной звезды), который позволяет получить множественное выравнивание A, такое, что <math>\frac{SP(A)}{SP(A^*)} \le \frac {2 (k - 1)}{k} = 2 - \frac{2}{k}.</math>'''




Метод центральной звезды стремится получить такое выравнивание, которое согласуется с оптимальным парным выравниванием центральной строки со всеми остальными строками. Граница выводится на основе неравенства треугольника оценочной функции. Временная сложность данного метода составляет O(k2t2), где I2 – время решения задачи парного выравнивания методом динамического программирования, а k2 – время поиска центральной строки Xc, дающей минимальное значение
Метод центральной звезды стремится получить такое выравнивание, которое согласуется с оптимальным парным выравниванием центральной строки со всеми остальными строками. Граница выводится на основе неравенства треугольника оценочной функции. Временная сложность данного метода составляет <math>O(k^2 \ell^2)</math>, где <math>\ell^2</math> – время решения задачи парного выравнивания методом динамического программирования, а <math>k^2</math> – время поиска центральной строки <math>X_c</math>, дающей минимальное значение <math>\sum_{i \ne c} D(X_c, X_i).</math>


Теорема 2. Пусть A* – оптимальное множественное выравнивание заданных k строк с минимальной оценкой SP. Предложен рандомизированный алгоритм, который позволяет получить выравнивание A, такое, что щ -2+ 7~[ с вероятностью не менее 1 - (Ly-)t для любых r > 1 и p > 1.


'''Теорема 2. Пусть A* – оптимальное множественное выравнивание заданных k строк с минимальной оценкой SP. Предложен рандомизированный алгоритм, который позволяет получить выравнивание A, такое, что <math>\frac{SP(A)}{SP(A^*)} \le 2 + \frac{1}{r - 1}</math> с вероятностью не менее <math>1 - \Big( \frac{r - 1}{r} \Big)^p</math> для любых <math>r > 1</math> и <math>p \ge 1.</math>'''


Вместо того чтобы вычислять (2) оптимальные парные выравнивания для поиска наилучшей центральной строки, рандомизированный алгоритм рассматривает только p случайно выбранных строк в качестве кандидатов на наилучшую центральную строку, поэтому для работы этого метода необходимо вычислить только (k - 1)p оптимальных парных выравниваний за время O(kpl2), где 1 < p < k.


Вместо того чтобы вычислять <math>\binom{k}{2}</math> оптимальных парных выравниваний для поиска наилучшей центральной строки, рандомизированный алгоритм рассматривает только p случайно выбранных строк в качестве кандидатов на наилучшую центральную строку, поэтому для работы этого метода необходимо вычислить только (k - 1)p оптимальных парных выравниваний за время <math>O(kp \ell^2)</math>, где <math>1 \le p \le k</math>.


Теорема 3. Пусть T* - оптимальное эволюционное дерево из заданных k строк с минимальной оценкой TA. Предложен алгоритм аппроксимации, позволяющий получить эволюционное дерево T


'''Теорема 3. Пусть T* - оптимальное эволюционное дерево из заданных k строк с минимальной оценкой TA. Предложен аппроксимационный алгоритм, позволяющий получить эволюционное дерево T, такое, что <math>\frac{TA(T)}{TA(T^*)} \le \frac{2 (k - 1)}{k} = 2 - \frac{2}{k}.</math>'''


В ходе работы алгоритма сначала вычисляются все Q) оптимальных парных выравниваний для построения графа, в котором каждая вершина представляет отдельную строку Xi, а вес каждого ребра (Xi ; Xj) равен D(Xi ; Xj). Этот шаг определяет общую временную сложность O(k2t2). Затем для этого графа вычисляется минимальное остовное дерево. Множественное выравнивание должно быть согласовано с оптимальными парными выравниваниями, представленными ребрами этого минимального остовного дерева.


В ходе работы алгоритма сначала вычисляются все <math>\binom{k}{2}</math> оптимальных парных выравниваний для построения графа, в котором каждая вершина представляет отдельную строку <math>X_i</math>, а вес каждого ребра <math>(X_i, X_j)</math> равен <math>D(X_i, X_j)</math>. Этот шаг определяет общую временную сложность <math>O(k^2 \ell^2)</math>. Затем для этого графа вычисляется минимальное остовное дерево. Множественное выравнивание должно быть согласовано с оптимальными парными выравниваниями, представленными ребрами этого минимального остовного дерева.


== Применение ==
== Применение ==
Строка 62: Строка 69:




В последнее время множественное выравнивание последовательностей используется также для выявления некодирующих РНК (нкРНК) [3]. При этом типе множественного выравнивания мы выравниваем не только базовые последовательности, но и вторичные структуры РНК (см. гл. 16 в [ ] для краткого ознакомления со вторичной структурой РНК). Исследователи считают, что нкРНК, принадлежащие к одному семейству, должны содержать общие компоненты, обеспечивающие сходную вторичную структуру. Множественное выравнивание способно помочь найти и идентифицировать эти общие компоненты.
В последнее время множественное выравнивание последовательностей используется также для выявления некодирующих РНК (нкРНК) [3]. При этом типе множественного выравнивания мы выравниваем не только базовые последовательности, но и вторичные структуры РНК (см. гл. 16 в [10] для краткого ознакомления со вторичной структурой РНК). Исследователи считают, что нкРНК, принадлежащие к одному семейству, должны содержать общие компоненты, обеспечивающие сходную вторичную структуру. Множественное выравнивание способно помочь найти и идентифицировать эти общие компоненты.


== Открытые вопросы ==
== Открытые вопросы ==
Остается нерешенным ряд задач, связанных с работой Гасфилда. Для меры SP метод центральной звезды может быть расширен до метода q-звезды (q > 2) с коэффициентом аппроксимации 2 - q/k ([1,7], раздел 7.5 работы [8]). Существует ли алгоритм аппроксимации с лучшим коэффициентом аппроксимации или с меньшей временной сложностью, пока неизвестно. Для меры TA наилучшим результатом на сегодняшний день является отношение аппроксимации в Теореме 3.
Остается нерешенным ряд задач, связанных с работой Гасфилда. Для меры SP метод центральной звезды может быть расширен до метода q-звезды (q > 2) с коэффициентом аппроксимации 2 - q/k ([1, 7], раздел 7.5 работы [8]). Существует ли аппроксимационный алгоритм с лучшим коэффициентом аппроксимации или с меньшей временной сложностью, пока неизвестно. Для меры TA наилучшим результатом на сегодняшний день является коэффициент аппроксимации из теоремы 3.




Другим интересным направлением, связанным с этой задачей, является задача множественного выравнивания последовательностей с ограничениями [9], в которой требуется, чтобы множественное выравнивание содержало определенные выровненные символы относительно заданной последовательности с ограничениями. Наиболее известным результатом [ ] является аппроксимационный алгоритм (также следующий методу центральной звезды), который позволяет получить выравнивание с коэффициентом аппроксимации 2 - 2/k для k строк.
Другим интересным направлением, связанным с этой задачей, является задача множественного выравнивания последовательностей с ограничениями [9], в которой требуется, чтобы множественное выравнивание содержало определенные выровненные символы относительно заданной последовательности с ограничениями. Наиболее известным результатом [2] является аппроксимационный алгоритм (также следующий методу центральной звезды), который позволяет получить выравнивание с коэффициентом аппроксимации 2 - 2/k для k строк.
   
   


Что касается сложности, то Ван и Цзян [11] первыми доказали NP-трудность задачи с мерой SP при неметрической мере расстояния над алфавитом из 4 символов. Недавно в работе [4] было доказано, что задача множественного выравнивания с мерой SP, выравниванием по методу звезды и мерой TA является NP-трудной для всех двухсимвольных или больших алфавитов при любой метрике. Разработка эффективных аппроксимационных алгоритмов с хорошими границами для любой из этих мер весьма желательна.
Что касается сложности, то Ван и Цзян [11] первыми доказали NP-трудность задачи с мерой SP при ''неметрической'' мере расстояния над алфавитом из 4 символов. Недавно в работе [4] было доказано, что задача множественного выравнивания с мерой SP, выравниванием по методу звезды и мерой TA является NP-трудной для всех двухсимвольных или больших алфавитов при ''любой метрике''. Разработка эффективных аппроксимационных алгоритмов с хорошими границами для любой из этих мер весьма желательна.


== Экспериментальные результаты ==
== Экспериментальные результаты ==
В работе приводятся два эксперимента, показывающие, что границы ошибки в теоремах 1 и 2 для меры SP в наихудшем случае являются пессимистичными по сравнению с типичной ситуацией, возникающей на практике.
В работе приводятся два эксперимента, показывающие, что границы ошибки в теоремах 1 и 2 для меры SP в наихудшем случае являются пессимистичными по сравнению с типичной ситуацией, возникающей на практике.
В экспериментах использовалась следующая схема оценки: s(a, b) = 0, если a = b; s(a, b) = 1, если либо a, либо b – пробел; в противном случае s(a, b) = 2. Поскольку было показано, что вычисление оптимального множественного выравнивания с минимальной оценкой SP является NP-трудной задачей, авторы оценивают эффективность своих алгоритмов, используя нижнюю границу <math>\sum_{i < j} D(X_i, X_j)</math> (напомним, что <math>D(X_i, X_j)</math> – это оценка оптимального парного выравнивания <math>X_i</math> и <math>X_j</math>). Было выровнено 19 сходных аминокислотных последовательностей со средней длиной 60 гомеобоксов от разных видов. Отношение оценок, полученных при выравнивании методом центральной звезды, к нижней границе составляет всего 1,018, что далеко от наихудшей границы ошибки, указанной в Теореме 1. Также было проведено выравнивание 10 не очень похожих последовательностей вблизи гомеобоксов, для которых отношение оценок выравнивания к нижней границе составило 1,162. Результаты также показывают, что выравнивание, полученное с помощью рандомизированного алгоритма, обычно не слишком далеко от нижней границы.
== См. также ==
* [[Статистическое множественное выравнивание]]
== Литература ==
1. Bafna, V., Lawler, E.L., Pevzner, P.A.: Approximation algorithms for multiple sequence alignment. Theor. Comput. Sci. 182, 233-244(1997)
2. Francis, Y.L., Chin, N.L.H., Lam, T.W., Prudence, W.H.W.: Efficient constrained multiple sequence alignment with performance guarantee. J. Bioinform. Comput. Biol. 3(1), 1 -18 (2005)
3. Dalli, D., Wilm, A., Mainz, I., Stegar, G.: STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time. Bioinformatics 22(13), 1593-1599 (2006)
4. Elias, I.: Setting the intractability of multiple alignment. In: Proc. of the 14th Annual International Symposium on Algorithms and Computation (ISAAC 2003), 2003, pp. 352-363
5. Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol. 55(1), 141-154(1993)
6. Pevsner, J.: Bioinformatics and functional genomics. Wiley, New York (2003)
7. Pevzner, P.A.: Multiple alignment, communication cost, and graph matching. SIAM J. Appl. Math. 52,1763-1779 (1992)
8. Pevzner, P.A.: Computational molecular biology: an algorithmic approach. MIT Press, Cambridge, MA (2000)
9. Tang, C.Y., Lu,C.L., Chang, M.D.T.,Tsai,Y.T., Sun,Y.J.,Chao, K.M., Chang, J.M., Chiou, Y.H., Wu, C.M., Chang, H.T., Chou, W.I.: Constrained multiple sequence alignment tool development and its application to RNase family alignment. In: Proc. of the First IEEE Computer Society Bioinformatics Conference (CSB 2002), 2002, pp. 127-137
10. Tompa,  M.:  Lecture notes.  Department of Computer Science & Engineering, University of Washington. http://www.cs.washington.edu/education/courses/527/00wi/. (2000)
11. Wang, L. Jiang, T.: On the complexity of multiple sequence alignment. J. Comp. Biol. 1,337-48 (1994)
4446

правок