Аноним

Минимальная бисекция: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
 
(не показано 6 промежуточных версий этого же участника)
Строка 7: Строка 7:




В своей основополагающей статье 1988 года Лейтон и Рао [14] разработали алгоритм аппроксимации по двум критериям для решения задачи о минимальной бисекции с логарифмическим коэффициентом. Этот алгоритм нашел множество приложений, однако вопрос поиска настоящего алгоритма аппроксимации со схожим коэффициентом оставался открытым еще десять лет. В 1999 году Файге и Краутгамер [6] предложили первый алгоритм аппроксимации солиномиальным временем выполнения, который аппроксимирует задачу с полилогарифмическим относительно размера графа коэффициентом.
В своей основополагающей статье 1988 года Лейтон и Рао [14] разработали аппроксимационный алгоритм по двум критериям для решения задачи о минимальной бисекции с логарифмическим коэффициентом. Этот алгоритм нашел множество приложений, однако вопрос поиска настоящего аппроксимационного алгоритма со схожим коэффициентом оставался открытым еще десять лет. В 1999 году Файге и Краутгамер [6] предложили первый аппроксимационный алгоритм с полиномиальным временем выполнения, который аппроксимирует задачу с полилогарифмическим относительно размера графа коэффициентом.


(Алгоритм аппроксимации по двум критериям разбивает вершины на два множество, каждое из которых содержит не более 2/3 вершин, и его значение (т.е. количество ребер, соединяющих множества) сравнивается со значением наилучшего разбиения на множества равного размера).
(Аппроксимационный алгоритм по двум критериям разбивает вершины на два множества, каждое из которых содержит не более 2/3 вершин, и его значение (т. е. количество ребер, соединяющих множества) сравнивается со значением наилучшего разбиения на множества равного размера).




Строка 54: Строка 54:


== Основные результаты ==
== Основные результаты ==
Фейге и Краутхамер [ ] предложили алгоритм аппроксимации для задачи о минимальной бисекции. Изначально они получили коэффициент апрроксимации O(log 2n), поскольку в их подходе использовался алгоритм Лейтона и Рао [14]; однако, применив вместо него алгоритм из [ ], авторы улучшили коэффициент до O(log '  и).
Фейге и Краутхамер [6] предложили аппроксимационный алгоритм для задачи о минимальной бисекции. Изначально они получили коэффициент апрроксимации <math>O(log^2 \; n)</math>, поскольку в их подходе использовался алгоритм Лейтона и Рао [14]; однако, применив вместо него алгоритм из [2], авторы улучшили коэффициент до <math>O(log^{1,5} \; n)</math>.




Теорема 1. Задача о минимальной бисекции может быть приближенно решена за полиномиальное время с коэффициентом O(log1:5 n). Более конкретно, алгоритм создает для входного графа G бисекцию (S, S), стоимость которой не превышает O(log1:5 n) b(G).
'''Теорема 1. Задача о минимальной бисекции может быть приближенно решена за полиномиальное время с коэффициентом <math>O(log^{1,5} \; n)</math>. Более конкретно, алгоритм создает для входного графа G бисекцию <math>(S, \bar{S}) \;</math>, стоимость которой не превышает <math>O(log^{1,5} \; n) \cdot b(G)</math>.'''




Строка 63: Строка 63:




Теорема 2. Задача о сбалансированном разрезе (и, в частности, о реберном сепараторе может быть приближенно решена за полиномиальное время с коэффициентом O(log1:5 n).
'''Теорема 2. Задача о <math>\beta</math>-сбалансированном разрезе (и, в частности, о реберном сепараторе) может быть приближенно решена за полиномиальное время с коэффициентом <math>O(log^{1,5} \; n)</math>.'''




Теорема 3. Задача о заранее заданном разбиении может быть приближенно решена за время nO(r) с коэффициентом O(log1:5 n).
'''Теорема 3. Задача о заранее заданном разбиении может быть приближенно решена за время <math>n^{O(r)} \;</math> с коэффициентом <math>O(log^{1,5} \; n)</math>.'''




Строка 72: Строка 72:




Теорема 4. Для графов, не включающих фиксированный граф в качестве минора (т.е. планарных графов) задачи о минимальной бисекции, /3-сбалансированном сечении и запранее заданном разбиении с фиксированным r могут быть приближенно решены за полиномиальное время с коэффициентом O(log n).
'''Теорема 4. Для графов, не включающих фиксированный граф в качестве минора (т.е. планарных графов) задачи о минимальной бисекции, <math>\beta</math>-сбалансированном сечении и заранее заданном разбиении с фиксированным r могут быть приближенно решены за полиномиальное время с коэффициентом O(log n).'''




Стоит отметить, что все эти результаты можно еще больше обобщить, включая в них веса вершин и вершины-полюса (пары s — t); см. главу 5 в [ 6].
Стоит отметить, что все эти результаты можно еще больше обобщить, включая в них веса вершин и вершины-полюса (пары s — t); см. главу 5 в [6].
 


== Родственные работы ==
== Родственные работы ==
Алгоритм аппроксимации по двум критериям для нахождения f$-сбалансированного разреза возвращает разрез, являющийся /^'-сбалансированным для заранее определенного значения /}' > p. Например, для бисекции, P = 1/2; обычно P' = 2/3.
Аппроксимационный алгоритм по двум критериям для нахождения <math>\beta</math>-сбалансированного разреза возвращает разрез, являющийся <math>\beta'</math>-сбалансированным для заранее определенного значения <math>\beta' > \beta \;</math>. Например, для бисекции <math>\beta = 1/2 \;</math> и чаще всего <math>\beta' = 2/3 \;</math>.
 


Алгоритмы из вышеприведенных теорем используют (в качестве черного ящика) алгоритм аппроксимации для задачи под названием «разрез с минимальным частным» или эквивалентной ей задачи нахождения самого неплотного сечения с равномерным спросом (?). Лучших из известных на данный момент алгоритмов аппроксимации с коэффициентом O(log n) для решения этой задачи для графов общего вида предложили Арора, Рао и Вазирани [2], а алгоритм для графов, не включающих фиксированный минор, с временем выполнения O(1) – Кляйн, Плоткин и Рао. Эти алгоритмы аппроксимации для вычисления разреза с минимальным частным позволяют получить алгоритм аппроксимации по двум критериям с полиномиальным временем выполнения (иногда называемый алгоритмом псевдоаппроксимации) для решения задачи о минимальной бисекции. Например, для графов общего вида алгоритм гарантированно вычисляет 2/3-сбалансированный разрез со стоимостью не более O(logn) • b(G). Отметим, впрочем, что 2/3-сбалансированный разрез не является хорошей аппроксимацией для значения b(G). Например, если граф G состоит из трех непересекающихся клик равного размера, оптимальный 2/3-сбалансированный разрез не содержит ребер, тогда как b(G) = Q(n2). Информацию о других работах в этом направлении, включая алгоритмы аппроксимации для плотных графов, для ориентированных графов, а также для других задач о разбиении графов см. в главе 1 [  ] и по ссылкам, приведенным в этой работе.


Алгоритмы из вышеприведенных теорем используют (в качестве черного ящика) аппроксимационный алгоритм для задачи под названием «разрез с минимальным частным» или эквивалентной ей задачи нахождения самого разреженного сечения с равномерным спросом (?). Лучшие из известных на данный момент аппроксимационные алгоритмы с коэффициентом <math>O( \sqrt{log \; n})</math> для решения этой задачи для графов общего вида предложили Арора, Рао и Вазирани [2], а алгоритм для графов, не включающих фиксированный минор, с временем выполнения O(1) – Кляйн, Плоткин и Рао. Эти аппроксимационные алгоритмы для вычисления разреза с минимальным частным позволяют получить аппроксимационный алгоритм по двум критериям с полиномиальным временем выполнения (иногда называемый алгоритмом псевдоаппроксимации) для решения задачи о минимальной бисекции. Например, для графов общего вида алгоритм гарантированно вычисляет 2/3-сбалансированный разрез со стоимостью не более <math>O( \sqrt{log \; n}) \cdot b(G)</math>. Отметим, впрочем, что 2/3-сбалансированный разрез не является хорошей аппроксимацией для значения b(G). Например, если граф G состоит из трех непересекающихся клик равного размера, оптимальный 2/3-сбалансированный разрез не содержит ребер, тогда как <math>b(G) = \Omega(n^2) \;</math>. Информацию о других работах в этом направлении, включая аппроксимационные алгоритмы для плотных графов, для ориентированных графов, а также для других задач о разбиении графов см. в главе 1 [6] и по ссылкам, приведенным в этой работе.


== Применение ==
== Применение ==
Строка 92: Строка 90:




Стоит отметить, что во многих подобных ситуациях применение истинной аппроксимации необязательно, аппроксимации по двум критериям может быть вполне достаточно. Тем не менее, алгоритмы, описанные в разделе «Основные результаты», использовались для разработки алгоритмов для решения других задач – таких как (1) алгоритм аппроксимации для решения задачи о минимальной бисекции в k-однородных гиперграфах [ ]; (2) алгоритм аппроксимации для варианта задачи о минимальном множественном разрезе [ ]; (3) алгоритм эффективного определения невыполнимости случайных булевых формул в 2k-конъюнктивной нормальной форме (2k-SAT) при достаточно большом количестве дизъюнктов [5].
Стоит отметить, что во многих подобных ситуациях применение истинной аппроксимации необязательно, аппроксимации по двум критериям может быть вполне достаточно. Тем не менее, алгоритмы, описанные в разделе «Основные результаты», использовались для разработки алгоритмов для решения других задач – таких как (1) аппроксимационный алгоритм для решения задачи о минимальной бисекции в k-однородных гиперграфах [3]; (2) аппроксимационный алгоритм для варианта задачи о минимальном множественном разрезе [17]; (3) алгоритм эффективного определения невыполнимости случайных булевых формул в 2k-конъюнктивной нормальной форме (2k-SAT) при достаточно большом количестве дизъюнктов [5].
 


С учетом практического подхода были предложены и изучены многочисленные эвристики (алгоритмы без гарантии для наихудшего случая) для разбиения графов; их комплексный обзор можно найтив [ ]. Одной из самых известных является эвристика локального поиска Лина-Кернигана для минимальной бисекции [11].


С учетом практического подхода были предложены и изучены многочисленные эвристики (алгоритмы без гарантии для наихудшего случая) для разбиения графов; их комплексный обзор можно найти в [1]. Одной из самых известных является эвристика локального поиска Лина-Кернигана для минимальной бисекции [11].


== Открытые вопросы ==
== Открытые вопросы ==
В настоящее время существует большой разрыв между коэффициентом аппроксимации O(log n) для задачи о минимальной бисекции, полученным в результате применения теоремы 1, и сложностью известных для него результатов аппроксимации. Как упоминалось выше, задача о минимальной бисекции является NP-полной [9].
В настоящее время существует большой разрыв между коэффициентом аппроксимации <math>O(log^{1,5} \; n)</math> для задачи о минимальной бисекции, полученным в результате применения теоремы 1, и сложностью известных для него результатов аппроксимации. Как упоминалось выше, задача о минимальной бисекции является NP-полной [9].




Неизвестно, является ли эта задача APX-полной, однако некоторые результаты позволяют предположить такую возможность. Буй и Джонс [4] показали, что для любого фиксированного значения e > 0 задача аппроксимации минимальной бисекции с дополнительным членом и2~е будет NP-полной. Фейге [ ] показал, что если опровержение для задачи выполнимости булевых формул в k-конъюнктивной нормальной форме в случае k=3 является сложным в среднем на реальном распределении входных данных, то для любого фиксированного значения " > 0 не существует алгоритма 4/3-аппроксимации задачи о минимальной бисекции. Хот [ ] доказал, что для нахождения минимальной бисекции неприменима схема аппроксимации с полиномиальным временем выполнения (PTAS), за исключением случая, если класс NP включает рандомизированные алгоритмы с субэкспоненциальным временем выполнения.
Неизвестно, является ли эта задача APX-полной, однако некоторые результаты позволяют предположить такую возможность. Буй и Джонс [4] показали, что для любого фиксированного значения <math>\epsilon > 0 \;</math> задача аппроксимации минимальной бисекции с дополнительным членом <math>n^{2 - \epsilon} \;</math> будет NP-полной. Фейге [7] показал, что если опровержение для задачи выполнимости булевых формул в k-конъюнктивной нормальной форме в случае k=3 является сложным в среднем на реальном распределении входных данных, то для любого фиксированного значения <math>\varepsilon > 0 \;</math> не существует алгоритма <math>(4/3 - \varepsilon \;)</math>-аппроксимации задачи о минимальной бисекции. Хот [12] доказал, что для нахождения минимальной бисекции неприменима аппроксимационная схема с полиномиальным временем выполнения (PTAS), за исключением случая, если класс NP включает рандомизированные алгоритмы с субэкспоненциальным временем выполнения.




Строка 108: Строка 105:




Версия с вершинным разрезом задачи о минимальном разрезе определяется следующим образом. Цель состоит в разбиении вершин входного графа на множества V = A [ B [ S, где |S| насколько возможно мало, при соблюдении следующего ограничения: max fjAj; jBjg < n/2 и ни одно ребро не связывает множества A и B. Неизвестно, можно ли получить алгоритм аппроксимации с полилогарифмическим коэффициентом для решения этой задачи. Стоит отметить, что на тот же вопрос, касающийся версии задачи о минимальной бисекции для ориентированных графов, Фейгеи Яхалом дали отрицательный ответ [8].
Версия с вершинным разрезом задачи о минимальном разрезе определяется следующим образом. Цель состоит в разбиении вершин входного графа на множества <math>V = A \cup B \cup S \;</math>, где |S| насколько возможно мало, при соблюдении следующего ограничения: <math>max \{ |A|, |B| \} \le n/2 \;</math>, и ни одно ребро не связывает множества A и B. Неизвестно, можно ли получить аппроксимационный алгоритм с полилогарифмическим коэффициентом для решения этой задачи. Стоит отметить, что на тот же вопрос, касающийся версии задачи о минимальной бисекции для ориентированных графов, Фейге и Яхалом дали отрицательный ответ [8].
 


== См. также ==
== См. также ==
Строка 115: Строка 111:


*'' [[Сепараторы в графах]]
*'' [[Сепараторы в графах]]
*'' [[Самое неплотное сечение]]
*'' [[Самое разреженное сечение]]




4446

правок