4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 67: | Строка 67: | ||
Теорема 2 (Арбелл, Ландау и Митчелл [2]; Макинен, Наварро и Укконен [10]). Расстояние Левенштейна между строками A' и B', закодированными длинами серий, может быть вычислена за время O(nm' + n'm). | '''Теорема 2 (Арбелл, Ландау и Митчелл [2]; Макинен, Наварро и Укконен [10]). Расстояние Левенштейна между строками A' и B', закодированными длинами серий, может быть вычислена за время O(nm' + n'm).''' | ||
Для метрики взвешенного расстояния редактирования Крочмор, Ландау и Зив-Укельсон [ ] и Макинен, Наварро и Укконен [11] предложили алгоритмы с временем выполнения O(nm' + n'm), используя совершенно отличные друг от друга методы. Алгоритм Крочмора, Ландау и Зив-Укельсона [6] основывается на технике, которая используется в алгоритме сравнения с шаблоном для текста с LZ-сжатием [ ], тогда как алгоритм Макинена, Наварро и Укконена [ ] является расширением алгоритма для метрики расстояния Левенштейна. | Для метрики взвешенного расстояния редактирования Крочмор, Ландау и Зив-Укельсон [6] и Макинен, Наварро и Укконен [11] предложили алгоритмы с временем выполнения O(nm' + n'm), используя совершенно отличные друг от друга методы. Алгоритм Крочмора, Ландау и Зив-Укельсона [6] основывается на технике, которая используется в алгоритме сравнения с шаблоном для текста с LZ-сжатием [6], тогда как алгоритм Макинена, Наварро и Укконена [11] является расширением алгоритма для метрики расстояния Левенштейна. | ||
Теорема 3 (Крочмор, Ландау и Зив-Укельсон 2003 [6]; Макинен, Наварро и Укконен [11]). Взвешенное расстояние редактирования между строками A' и B', закодированными длинами серий, может быть вычислена за время O(nm' + n'm). | '''Теорема 3 (Крочмор, Ландау и Зив-Укельсон 2003 [6]; Макинен, Наварро и Укконен [11]). Взвешенное расстояние редактирования между строками A' и B', закодированными длинами серий, может быть вычислена за время O(nm' + n'm).''' | ||
Строка 79: | Строка 79: | ||
Теорема 4 (Ким, Амир, Ландау и Парк, 2005 [8]). Сходство между закодированными длинами серий строками A' и B' согласно метрике аффинного штрафа за гэп может быть вычислено за время O(nm' + n'm). | '''Теорема 4 (Ким, Амир, Ландау и Парк, 2005 [8]). Сходство между закодированными длинами серий строками A' и B' согласно метрике аффинного штрафа за гэп может быть вычислено за время O(nm' + n'm).''' | ||
Строка 88: | Строка 88: | ||
Теорема 5 (Апостолико, Ландау и Скиена, 1999 [ ]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O(n' m' log(n' + m')). | '''Теорема 5 (Апостолико, Ландау и Скиена, 1999 [ ]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O(n' m' log(n' + m')).''' | ||
Строка 94: | Строка 94: | ||
Теорема 6 (Митчелл, 1997 [12]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O((d + n' + m') log(d + n' + m')), где d– число совпадений сжатых символов. | '''Теорема 6 (Митчелл, 1997 [12]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O((d + n' + m') log(d + n' + m')), где d– число совпадений сжатых символов.''' | ||
Строка 100: | Строка 100: | ||
Гипотеза 1 (Макинен, Наварро и Укконен, 2003 [11]). Самая длинная подпоследовательность строк A' и B', закодированных длинами серий, в среднем может быть вычислена за время O(n'm'). | '''Гипотеза 1 (Макинен, Наварро и Укконен, 2003 [11]). Самая длинная подпоследовательность строк A' и B', закодированных длинами серий, в среднем может быть вычислена за время O(n'm').''' | ||
Строка 106: | Строка 106: | ||
Теорема 7 (Крочмор, Ландау и Зив-Укельсон, 1993 [6]). Сходство между LZ-сжатыми строками X' и Y' в метрике аддитивного штрафа за гэп может быть вычислено за время O(hn2 / log n), где h < 1 – энтропия строк X и Y. | '''Теорема 7 (Крочмор, Ландау и Зив-Укельсон, 1993 [6]). Сходство между LZ-сжатыми строками X' и Y' в метрике аддитивного штрафа за гэп может быть вычислено за время O(hn2 / log n), где h < 1 – энтропия строк X и Y.''' | ||
== Применение == | == Применение == |
правка