Аноним

Локальное выравнивание (с вогнутыми штрафами за гэп): различия между версиями

Материал из WEGA
м
 
(не показаны 3 промежуточные версии этого же участника)
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
В работе Миллера и Майерса [9] рассматривается задача парного выравнивания последовательностей, в которой мера расстояния основана на модели штрафа за открытие гэпа. Авторы предложили эффективный алгоритм для решения задачи в ситуации, когда штраф за открытие гэпа является вогнутой функцией от длины гэпа.
В работе Миллера и Майерса [9] рассматривается задача парного выравнивания последовательностей, в которой мера расстояния основана на модели штрафа за гэп (пропуск в последовательности). Авторы предложили эффективный алгоритм для решения задачи в ситуации, когда штраф за гэп является вогнутой функцией от длины гэпа.




Строка 9: Строка 9:




Для оценки качества выравнивания было предложено множество различных метрик (например, расстояние редактирования, матрица замен [11]). В данной статье рассматривается модель ''штрафа за открытие гэпа''.
Для оценки качества выравнивания было предложено множество различных метрик (например, расстояние редактирования, матрица замен [11]). В данной статье рассматривается модель ''штрафа за гэп''.




Строка 18: Строка 18:




Штрафная функция W(k) является ''аффинной'', если W(k) = a + bk, где a, b – константы. Аффинная функция является частным случаем вогнутой функции. Задача об аффинных штрафах рассматривалась в работах [1, 6] и в [[Локальное выравнивание (с аффинными штрафами за открытие гэпа)|одноименной статье]].
Штрафная функция W(k) является ''аффинной'', если W(k) = a + bk, где a, b – константы. Аффинная функция является частным случаем вогнутой функции. Задача об аффинных штрафах рассматривалась в работах [1, 6] и в [[Локальное выравнивание (с аффинными штрафами за гэп)|одноименной статье]].




Строка 26: Строка 26:
'''Задача'''
'''Задача'''


'''Дано''': Две строки X и Y, функция оценки <math>\delta</math> и функция штрафа за открытие гэпа W(k).
'''Дано''': Две строки X и Y, функция оценки <math>\delta</math> и функция штрафа за гэп W(k).


'''Требуется''': найти оптимальное выравнивание X и Y.
'''Требуется''': найти оптимальное выравнивание X и Y.
Строка 55: Строка 55:




Концептуально оценка выравнивания используется для фиксации эволюционного расстояния между двумя заданными последовательностями. Поскольку гэп величиной в более чем один пробел может быть создан одним мутационным событием, в некоторых случаях может быть более уместным рассматривать гэп длиной k в качестве единичного элемента вместо k различных точечных мутаций. Однако вопрос о том, какую функцию штрафа за открытие гэпа следует использовать, весьма непрост и иногда зависит от конкретного приложения. В большинстве приложений, таких как BLAST, используется аффинная функция штрафа, которая на практике до сих пор является доминирующей моделью. С другой стороны, Беннер и др. [2], а также Гу и Ли [13] предложили в некоторых случаях использовать логарифмическую функцию штрафа. Вопрос о том, имеет ли смысл использовать вогнутую функцию штрафа за открытие гэпа в целом, остается открытым.
Концептуально оценка выравнивания используется для фиксации эволюционного расстояния между двумя заданными последовательностями. Поскольку гэп величиной в более чем один пробел может быть создан одним мутационным событием, в некоторых случаях может быть более уместным рассматривать гэп длиной k в качестве единичного элемента вместо k различных точечных мутаций. Однако вопрос о том, какую функцию штрафа за открытие гэпа следует использовать, весьма непрост и иногда зависит от конкретного приложения. В большинстве приложений, таких как BLAST, используется аффинная функция штрафа, которая на практике до сих пор является доминирующей моделью. С другой стороны, Беннер и др. [2], а также Гу и Ли [13] предложили в некоторых случаях использовать логарифмическую функцию штрафа. Вопрос о том, имеет ли смысл использовать вогнутую функцию штрафа за открытие гэпа в общем случае, остается открытым.


== Открытые вопросы ==
== Открытые вопросы ==
Отметим, что результаты данной статьи были независимо получены Галилом и Джанкарло [5]; для аффинного штрафа за открытие гэпа Готох [5] предложил алгоритм для решения задачи выравнивания с временем выполнения <math>O(n^2)</math>. В работе [4] Эппштейн представил более быстрый алгоритм для решения той же задачи выравнивания последовательностей с вогнутой функцией штрафа за открытие гэпа с временем выполнения <math>O(n^2)</math>. Вопрос о том, существует ли субквадратичный алгоритм для решения этой задачи, остается открытым. Следует отметить, что субквадратичные алгоритмы для решения задачи выравнивания последовательностей существуют в случаях, когда метрика не основана на модели штрафа за открытие гэпа и вычисляется как <math>\sum_{i = 1}^{\ell} \delta(X'[i], Y'[i])</math>, основываясь только на функции оценки <math>\delta(a, b)</math>, где <math>a, b \in \Sigma \cup \{ </math> _ <math> \} </math>, где "_" обозначает пробел [3, 8].
Отметим, что результаты данной статьи были независимо получены Галилом и Джанкарло [5]; в случае аффинного штрафа за открытие гэпа Готох [5] предложил алгоритм для решения задачи выравнивания с временем выполнения <math>O(n^2)</math>. В работе [4] Эппштейн представил более быстрый алгоритм для решения той же задачи выравнивания последовательностей с вогнутой функцией штрафа за открытие гэпа с временем выполнения <math>O(n^2)</math>. Вопрос о том, существует ли субквадратичный алгоритм для решения этой задачи, остается открытым. Следует отметить, что субквадратичные алгоритмы для решения задачи выравнивания последовательностей существуют в случаях, когда метрика не основана на модели штрафа за открытие гэпа и вычисляется как <math>\sum_{i = 1}^{\ell} \delta(X'[i], Y'[i])</math>, основываясь только на функции оценки <math>\delta(a, b)</math>, где <math>a, b \in \Sigma \cup \{ </math> _ <math> \} </math>, где "_" обозначает пробел [3, 8].


== Экспериментальные результаты ==
== Экспериментальные результаты ==
4446

правок