4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 18: | Строка 18: | ||
'''Определение 3 (максимальное независимое множество)'''. Пусть дан граф G = (V, E). Независимое множество представляет собой подмножество попарно не смежных вершин в графе G. Максимально независимое множество в G – это независимое множество <math>S \subseteq V</math>, такое, что для каждой вершины <math>u \notin S</math> существует вершина <math>v in (u)</math> в S. | '''Определение 3 (максимальное независимое множество)'''. Пусть дан граф G = (V, E). Независимое множество представляет собой подмножество попарно не смежных вершин в графе G. Максимально независимое множество в G – это независимое множество <math>S \subseteq V</math>, такое, что для каждой вершины <math>u \notin S</math> существует вершина <math>v \in \Gamma (u)</math> в S. | ||
Еще одним важным примитивом в беспроводных сетях является задача раскраски вершин, в которой различные цвета ассоциируются с различными временными интервалами в схеме множественного доступа с временным разделением каналов (TDMA); правильная раскраска соответствует уровню управления доступом к среде передачи данных без прямой интерференции – иначе говоря, никакие два соседних узла не посылают сообщения в одно и то же время. | Еще одним важным примитивом в беспроводных сетях является задача ''раскраски вершин'', в которой различные цвета ассоциируются с различными временными интервалами в схеме множественного доступа с временным разделением каналов (TDMA); правильная раскраска соответствует уровню управления доступом к среде передачи данных без ''прямой интерференции'' – иначе говоря, никакие два соседних узла не посылают сообщения в одно и то же время. | ||
Определение 4 (минимальная раскраска вершин). Пусть дан граф G = (V, E). Правильная раскраска вершин графа G представляет собой назначение цвета c(v) каждой вершине v | '''Определение 4 (минимальная раскраска вершин)'''. Пусть дан граф G = (V, E). Правильная раскраска вершин графа G представляет собой назначение цвета c(v) каждой вершине <math>v \in V</math>, такого, что <math>c(u) \ne c(v)</math> для любых двух соседних вершин </math>(u, v) \in E</math>. Минимальная раскраска – это правильная раскраска, при которой количество используемых цветов минимально. | ||
Строка 30: | Строка 30: | ||
Определение 5 (модель неструктурированной радиосети). В модели неструктурированной радиосети беспроводная сеть моделируется графом единичных дисков G = (V, E). В каждом временном интервале узел u | '''Определение 5 (модель неструктурированной радиосети)'''. В модели неструктурированной радиосети беспроводная сеть моделируется графом единичных дисков G = (V, E). В каждом временном интервале узел <math>u \in V</math> может либо отправить, либо не отправить сообщение. Узел <math>v, (u, v) \in E</math>, получает сообщение тогда и только тогда, когда ''ровно один'' из его соседей отправил сообщение в этом временном интервале. Кроме того, делаются следующие предположения: | ||
• Асинхронное пробуждение: новые узлы могут просыпаться/присоединяться асинхронно в любое время. До пробуждения узлы не получают и не отправляют никаких сообщений. | • ''Асинхронное пробуждение'': новые узлы могут просыпаться/присоединяться асинхронно в любое время. До пробуждения узлы не получают и не отправляют никаких сообщений. | ||
• Нет глобальных часов: узлы имеют доступ только к локальным часам, «время» на которых начинает увеличиваться после пробуждения. | • ''Нет глобальных часов'': узлы имеют доступ только к локальным часам, «время» на которых начинает увеличиваться после пробуждения. | ||
• Отсутствует обнаружение конфликтов: узлы не могут различить ситуацию конфликта и отсутствие сообщения. Более того, отправляющий узел не знает, сколько его соседей правильно приняли его передачу – и были ли таковые приемы вообще. | • ''Отсутствует обнаружение конфликтов'': узлы не могут различить ситуацию конфликта и отсутствие сообщения. Более того, отправляющий узел не знает, сколько его соседей правильно приняли его передачу – и были ли таковые приемы вообще. | ||
• Минимальное знание глобальной ситуации: в момент пробуждения узлы не имеют информации о своих соседях в сети и им неизвестно, проснулись ли уже некоторые соседи, чтобы начать выполнять алгоритм. Однако узлам известна верхняя граница для максимального числа узлов n = |V|. | • ''Минимальное знание глобальной ситуации'': в момент пробуждения узлы не имеют информации о своих соседях в сети и им неизвестно, проснулись ли уже некоторые соседи, чтобы начать выполнять алгоритм. Однако узлам известна верхняя граница для максимального числа узлов n = |V|. | ||
Строка 44: | Строка 44: | ||
Определение 6 (временная сложность). Время работы | '''Определение 6 (временная сложность)'''. ''Время работы'' <math>T_v</math> узла <math>v \in V</math> определяется как количество временных интервалов между ''пробуждением'' v и моментом, когда v принимает бесповоротное ''окончательное решение'' о результате выполнения своего протокола (например, присоединяется ли он к доминирующему множеству в алгоритме кластеризации, какой цвет принять в алгоритме раскраски и т. п.). ''Временная сложность'' T(Q) алгоритма Q определяется как максимальное время работы над всеми узлами в сети, т.е. T(Q) := maxv2 V Tv. | ||
== Основные результаты == | == Основные результаты == |
правка