Нахождение ближайшей подстроки: различия между версиями
Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Нахождение приближенной общей подстроки == Постановка зад…») |
(нет различий)
|
Версия от 16:22, 1 декабря 2019
Ключевые слова и синонимы
Нахождение приближенной общей подстроки
Постановка задачи
Задача нахождения ближайшей подстроки (CLOSEST SUBSTRING) является базовой задачей при анализе строк с поиском консенсуса, который применяется, в частности, в вычислительной биологии. Его версия разрешимости определяется следующим образом.
Нахождение ближайшей подстроки (CLOSEST SUBSTRING)
Дано: k строк s1, s2, ..., sk над алфавитом S и неотрицательные целые числа d и L. Вопрос: существует ли строка s длины L, а также существует ли для всех i = 1, ..., k подстрока s0i строки si длины L, такая, что
Здесь dH(s, s0i) обозначает расстояние Хэмминга между s и si0, т. е. количество позиций, в которых s и si0 различаются. Согласно нотации, применявшейся в работе [ ], m обозначает среднюю длину входных строк, а n – суммарный размер входных данных задачи.
В оптимизационной версии задачи CLOSEST SUBSTRING необходимо найти минимальное значение параметра расстояния d, для которого входные строки позволяют найти решение.
Основные результаты
Сложность классического алгоритма CLOSEST SUBSTRING задается следующим выражением:
Теорема 1 [4, 5]. Задача CLOSEST SUBSTRING является NP-полной и остается таковой в специальном случае CLOSEST STRING, в котором искомая строка s должна иметь ту же длину, что и исходные строки. Задача CLOSEST STRING является NP-полной даже в случае ограничения в виде бинарного алфавита.
Следующая теорема дает ключевое представление об аппроксимируемости задачи:
Теорема 2 [6]. Задача CLOSEST SUBSTRING (также как CLOSEST STRING) допускает применение схем аппроксимации с полиномиальным временем выполнения (PTAS), в которых целевой функцией является минимальное расстояние Хэмминга d.
В рандомизированной версии упомянутая в теореме 2 схема PTAS с высокой вероятностью находит решение с расстоянием Хэмминга (1 + e)dopt для оптимального значения dopt за время (k2■m)o(los|-E|/e4). При увеличении накладных расходов эту рандомизированную версию PTAS можно дерандомизировать. Прямолинейная и эффективная аппроксимация с коэффициентом 2 для задачи CLOSEST STRING достигается путем проверки всех подстрок длины L одной из входных строк.
Следующие два утверждения характеризуют параметризованную сложность задачи относительно обоих параметров d и k:
Теорема 3[ ]. Задача CLOSEST SUBSTRING является W[1]-сложной относительно параметра k даже для бинарного алфавита.
Теорема 4[ ]. Задача CLOSEST SUBSTRING является W[1]-сложной относительно параметра d даже для бинарного алфавита.
Для небинарного алфавита утверждение теоремы 3 было независимо доказано Эванс и коллегами [2]. Теоремы 3 и 4 говорят о том, что существование точного алгоритма решения задачи CLOSEST SUBSTRING с полиномиальными временем выполнения маловероятно как для константного значения d, так и для константного значения k, то есть такого алгоритма не существует за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время.
Теорема 4 также позволяет по-новому взглянуть на вопрос аппроксимируемости задачи: в схеме PTAS для задачи CLOSEST SUBSTRING показатель степени полинома, ограничивающего время выполнения, зависит от коэффициента аппроксимации. Эта схема не является «эффективной» PTAS (EPTAS), то есть PTAS с временем выполнения f(e) ■ nc для некоторой функции f и некоторой константы c и, следовательно, вряд ли окажется полезной на практике. Из теоремы 4 следует, что PTAS с временем выполнения no{i/e), представленная в [ ], скорее всего,не может быть улучшена до EPTAS. Точнее говоря, не существует PTAS с временем выполнения /(e) • ио(1о«1/е) для задачи CLOSEST SUBSTRING, за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время. Кроме того, из доказательства теоремы 4 также следует
Теорема 5 [7]. Не существует алгоритма, решающего задачу CLOSEST SUBSTRING приближенно за время f(d; k) ■ no(logd) и точно за время g(d; k) • no(logl°gk) для некоторых функций f и g, за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время.
Для неограниченных алфавитов были получены более строгие границы за счет того, что было показано, что не существует PTAS с временем выполнения /(e) • и°'1/е' для задачи CLOSEST SUBSTRING для любой функции f, за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время. Следующие утверждения дают возможность получить точные алгоритмы решения задачи CLOSEST SUBSTRING для небольших фиксированных значений d и k, соответствующие границе, приведенной в теореме Theorem 5:
d(logd+2)
Теорема 6 [7]. Задача CLOSEST SUBSTRING может быть решена за время f(d) ■ n°^°&^ для некоторой функции f, где, более точно, f(d) = \E.
Теорема 7 [7]. Задача CLOSEST SUBSTRING может быть решена за время g(d; k) ■ nO(loglogk) для некоторой функции g, где, более точно, g(d; k) = (\E\d)0(kd\.
Относительно заданного в задаче параметра L задачу CLOSEST SUBSTRING можно тривиально решить за время O(j^l1" • n), проверяя все возможные строки над алфавитом S.
Применение
Алгоритмы решения задачи CLOSEST SUBSTRING широко применяются при анализе биологических последовательностей. При нахождении мотивов задача заключается в поиске «сигнала», общего для множества выбранных строк, представляющих последовательности ДНК или белка. Одним из вариантов представления таких сигналов являются приближенно сохраненные подстроки, встречающиеся в каждой из входных строк. Применение расстояния Хэмминга в качестве биологически значимой меры расстояния позволяет рассматривать задачу в формулировке CLOSEST SUBSTRING. Например, Саго [ ] изучала способы поиска мотивов при помощи решения задачи CLOSEST SUBSTRING (и ее обобщений) с использованием суффиксных деревьев; у этого подхода время выполнения в наихудшем случае составляет O(k2m- Ld ■ \S\d). Для поиска мотивов также были предложены эвристики, применимые к задаче CLOSEST SUBSTRING; в частности, Певзнер и Зе [ ] представили алгоритм под названием WINNOWER, а Булер и Томпа [1] использовали технику случайных проекций.
Открытые вопросы
Остается нерешенным вопрос [ ], можно ли схему аппроксимации с временем выполнения no(-ll€ ), предложенную в работе [ ], улучшить до M°'logl/e' в соответствии с границей, полученной на основе теоремы 4.
См. также
Следующие задачи тесно связаны с задачей CLOSEST SUBSTRING:
• Задача нахождения ближайшей строки (Closest String) является специальным случаем CLOSEST SUBSTRING, в котором искомая строка s должна иметь ту же длину, что и исходные строки.
• Задача выбора различающей подстроки (Distinguishing Substring Selection) представляет собой обобщение CLOSEST SUBSTRING, в котором заданы второе множество входных строк и дополнительное целое число d0, а искомое решение в виде строки s, помимо основного требования CLOSEST SUBSTRING, должно иметь расстояние Хэмминга не менее d0 от каждой подстроки длины L второго множества строк.
• Задача поиска консенсусных образцов (Consensus Patterns) получается путем замены в определении задачи CLOSEST SUBSTRING максимума из расстояний Хэмминга на сумму этих расстояний. Таким образом, задача CONSENSUS PATTERNS отвечает на вопрос: существуетли строка s длины L, такая, что
Задача CONSENSUS PATTERNS является специальным случаем задачи нахождения подстрок максимальной экономичности (SUBSTRING PARSIMONY), в которой филогенетическое дерево из определения SUBSTRING PARSIMONY представляет собой звездчатое дерево.
Литература
1. Buhler, J.,Tompa, M.: Finding motifs using random projections. J. Comput. Biol. 9(2), 225-242 (2002)
2. Evans, P.A., Smith, A.D., Wareham, H.T.: On the complexity of finding common approximate substrings. Theor. Comput. Sci. 306(1-3),407-430(2003)
3. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems. Combinatorica 26(2),141-167(2006)
4. Frances, M., Litman, A.: On covering problems of codes. Theor. Comput. Syst. 30,113-119 (1997)
5. Lanctot, J.K.: Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing String Search Problems. Inf. Comput. 185,41-55 (2003)
6. Li, M., Ma, B., Wang, L.: On the Closest String and Substring Problems. J. ACM 49(2), 157-171 (2002)
7. Marx, D.: The Closest Substring problem with small distances. In: Proceedings of the 46th FOCS, pp 63-72. IEEE Press, (2005)
8. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle signals in DNA sequences. In: Proc. of 8th ISMB, pp. 269-278. AAAI Press, (2000)
9. Sagot, M.F.: Spelling approximate repeated or common motifs using a suffix tree. In: Proc. of the 3rd LATIN, vol. 1380 in LNCS, pp. 111-127. Springer (1998)
10. Wang,J., Huang, M., Cheng, J.: A Lower Bound on Approximation Algorithms for the Closest Substring Problem. In: Proceedings COCOA 2007, vol. 4616 in LNCS, pp. 291-300 (2007)