Reducible (control) flow graph: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Reducible (control) flow graph''' --- сводимый управляющий граф. Let <math>G</math> be a ''cf-graph'' and let <math>k\geq 0</math>. The…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Reducible (control) flow graph''' --- сводимый управляющий граф. | '''Reducible (control) flow graph''' --- [[сводимый управляющий граф]]. | ||
Let <math>G</math> be a ''cf-graph'' and let <math>k\geq 0</math>. | Let <math>G</math> be a ''cf-graph'' and let <math>k\geq 0</math>. | ||
Строка 8: | Строка 8: | ||
such that <math>G_k=I_{k+1}(G)</math>. <math>G</math> is called '''(interval) reducible''' if | such that <math>G_k=I_{k+1}(G)</math>. <math>G</math> is called '''(interval) reducible''' if | ||
its limit cf-graph is trivial and '''(interval) irreducible''' otherwise. | its limit cf-graph is trivial and '''(interval) irreducible''' otherwise. | ||
[[Категория: Сводимые и регуляризуемые графы]] |
Текущая версия от 21:26, 8 октября 2019
Reducible (control) flow graph --- сводимый управляющий граф.
Let [math]\displaystyle{ G }[/math] be a cf-graph and let [math]\displaystyle{ k\geq 0 }[/math]. The [math]\displaystyle{ k }[/math]derived cf-graph [math]\displaystyle{ G_k }[/math] of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ G_k=I_k(G) }[/math], is defined by the following rules: [math]\displaystyle{ G_0=G }[/math], and for any [math]\displaystyle{ k\gt 0 }[/math] the cf-graph [math]\displaystyle{ G_k }[/math] is derived from the cf-graph [math]\displaystyle{ G_{k-1} }[/math] by reduction of its maximal interval into nodes. The limit cf-graph of [math]\displaystyle{ G }[/math] is defined as its [math]\displaystyle{ k }[/math]-derived cf-graph [math]\displaystyle{ G_k }[/math] such that [math]\displaystyle{ G_k=I_{k+1}(G) }[/math]. [math]\displaystyle{ G }[/math] is called (interval) reducible if its limit cf-graph is trivial and (interval) irreducible otherwise.