Аноним

Embedding of a graph: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''Embedding of a graph''' --- укладка графа, вложение графа. An '''embedding''' of a graph <math>G</math> (into a ''complement'' <math>\b…»)
 
Нет описания правки
 
Строка 2: Строка 2:


An '''embedding''' of a graph <math>G</math> (into a ''complement'' <math>\bar{G}</math>) is a
An '''embedding''' of a graph <math>G</math> (into a ''complement'' <math>\bar{G}</math>) is a
per\-mu\-ta\-tion <math>\sigma</math> on <math>V(G)</math> such that if an edge <math>xy</math> belongs to
permutation <math>\sigma</math> on <math>V(G)</math> such that if an edge <math>xy</math> belongs to
<math>E(G)</math>, then <math>\sigma(x)\sigma(y)</math> does not belong to <math>E(G)</math>. If there
<math>E(G)</math>, then <math>\sigma(x)\sigma(y)</math> does not belong to <math>E(G)</math>. If there
exists an embedding of <math>G</math>, we say that <math>G</math> is embeddable or that there
exists an embedding of <math>G</math>, we say that <math>G</math> is embeddable or that there
is a '''packing''' of two copies of the graph <math>G</math> (of order <math>n</math>) into
is a '''packing''' of two copies of the graph <math>G</math> (of order <math>n</math>) into
the complete graph <math>K_{n}</math>.
the complete graph <math>K_{n}</math>.