4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 9: | Строка 9: | ||
== Основные результаты == | == Основные результаты == | ||
Первое решение задачи сравнения нескольких строк заключается в применении алгоритма точного сравнения строк для локализации каждого шаблона в P. Сложность этого алгоритма составляет O(kn) в наихудшем случае. Существуют более эффективные решения, основанные на двух подходах. Первый подход, предложенный Ахо и Корасик [ ], представляет собой расширение алгоритма сравнения с одним шаблоном с помощью конечного автомата. Второй подход, реализованный Комменц-Уолтер [ ], расширяет алгоритм Бойера-Мура на случай нескольких шаблонов. | |||
Алгоритм Ахо-Корасик вначале строит бор T(P) – цифровое дерево, распознающее шаблоны P. Бор T(P) представляет собой дерево, ребра которого помечены буквами, а вдоль ветвей можно прочесть шаблоны P. Вершина p бора T(P) ассоциируется с уникальным словом w, «написанным» по пути в T(P), ведущему из его корня в p. Сам корень идентифицируется с пустым словом ". Заметим, что если w является вершиной в T(P), то w является префиксом некоторого шаблона Pi 2 P. Если вдобавок к этому 2 £, то child(w, a) совпадает с wa, если wa является вершиной в T(P), и равно NIL в противном случае. | |||
На втором этапе, когда шаблоны добавляются к бору, алгоритм инициализирует выходную функцию out. Он ассоциирует одноэлементное множество {Pi} с вершинами Pi (1 < i < k) и пустое множество – со всеми другими вершинами T(P). | |||
Наконец, последним этапом предварительной обработки является создание ссылок для случаев несовпадения для каждой вершины и одновременное завершение создания выходной функции. Функция несовпадения fail определяется на вершинах следующим образом (w является вершиной): fail(w) = u, где u – самый длинный подходящий суффикс w, принадлежащий к T(P). Вычисление ссылок для несовпадений выполняется в процессе обхода T(P) в ширину. Завершение выходной функции выполняется в ходе вычисления функции для несовпадения с использованием следующего правила: если fail(w) = u, то out(w) = out(w) [ out(u). | |||
Чтобы избежать возвратов по ссылкам для несовпадений при вычислении этих ссылок, а также для обхода символов текста, для которых не был определен переход от корны на этапе поиска, к корню бора добавляется цикл для этих символов. В результате получаем механизм поиска совпадений с шаблонами или конечный автомат Ахо-Корасик (см. рис. 1). | |||
Рисунок 1. Механизм поиска совпадений с шаблонами или конечный автомат Ахо-Корасик для множества строк {search, ear, arch, chart} | |||
После завершения этапа предварительной обработки алгоритм переходит к этапу поиска, заключающемуся в разборе текста T при помощи T(P). Он начинается с корня T(P) и использует ссылки с несовпадениями в случаях, когда символ в T не совпадает ни с одной из меток исходящих ребер текущей вершины. Каждый раз, когда встречается вершина с непустым выходным значением, это значит, что в тексте были обнаружены шаблоны выходного текста, заканчивающиеся в текущей позиции. Эта позиция является выходной. | |||
Теорема 1 (Ахо и Корасик [ ]). После предварительной обработки P, поиск вхождений строк из P в тексте T может быть выполнен за время O(n x log cr). Время выполнения соответствующего этапа предварительной обработки составляет O(|P| x log cr). Обе операции требуют дополнительной памяти в объеме O(|P|). | |||
Алгоритм Ахо-Корасик, в сущности, представляет собой расширение алгоритма Морриса-Пратта для точного сравнения конечного множества строк. | |||
Комменц-Уолтер [ ] обобщила алгоритм точного сравнения строк Бойера-Мура для случая нескольких строк. Ее алгоритм строит бор для обращенных шаблонов в P вместе с двумя таблицами сдвига и применяет стратегию сканирования справа налево. Однако он довольно сложен в реализации и имеет квадратичную временную сложность в наихудшем случае. | |||
Алгоритм сравнения с помощью ОАГС является обобщением алгоритма BDM для точного сравнения строк. Он включает построение точной индексной структуры для обращенных строк P, такой как фактор-автомат или обобщенное суффиксное дерево, вместо протого бора, как в предыдущем варианте (см. рис. 2). Алгоритм в целом может быть сделан оптимальным за счет использования как индексной структуры для обращенных шаблонов, так и конечного автомата Ахо-Корасик для шаблонов. Поиск в этом случае включает сканирование некоторых фрагментов текста слева направо, а некоторых – справа налево. Это позволяет пропускать большие фрагменты текста T. | |||
Рисунок 2. Пример ОАГС (DAWG), индексной структуры, используемой для сравнения множества строк {search, ear, arch, chart}. Конечный автомат принимает обращенные префиксы строк | |||
Теорема 2 (Крочмор и др., [ ]). Алгоритм сравнения с помощью ОАГС выполняет не более 2n сравнений символов. Предполагая, что сумма длин шаблонов в P меньше lmink, алгоритм сравнения с помощью ОАГС производит в среднем O((n\oglmin)/lmin) проверок символов текста. | |||
Узким местом ОАГС-алгоритма является объем времени и памяти, затрачиваемых на построение точной индексной структуры. Этого можно избежать, заменив точную индексную структуру оракулом фактора для множества строк. При использовании только оракула фактора получается алгоритм сопоставления с обращенным оракулом множества (Set Backward Oracle Matching, SBOM). Этот точный алгоритм демонстрирует почти такое же хорошее поведение, как и алгоритм сравнения с помощью ОАГС. | |||
Техника битового параллелизма может применяться для моделирования ОАГС-алгоритма. В результате получается алгоритм Наварро и Раффино MultiBNDM [ ]. Эта стратегия эффективно работает в случае, когда /ex imin бит помещаются в нескольких машинных словах. Префиксы строк P длины Imin упаковываются в один битовый вектор. После этого поиск выполняется так же, как в алгоритме точного сравнения строк BNDM, и осуществляется для всех префиксов в одно и то же время. | |||
Обобщение подхода со сдвигом плохого символа, как в алгоритме точного сравнения строк Хорспула, оказывается неэффективным для задачи MSM из-за высокой вероятности нахождения каждого символа алфавита в одной из строк P. | |||
Алгоритм Ву и Манбера [ ] рассматривает блоки длины i. Блоки такой длинны хэшируются при помощи функции h в значения меньше maxvalue. Функция сдвига shift[h(B)] определяется как минимальное изначение из \P'\— j и imin - I + 1 с B = p'_l+1 : : : pij для 1 < i < k и 1 < j < jPi j. Значение I варьируется в зависимости от минимальной длины строк в P и размера алфавита. Значение maxvalue варьируется в зависимости от объема доступной памяти. | |||
На этапе поиска этого алгоритма производится чтение блоков B длины i. Если shift[h(B)] > 0, то выполняется сдвиг на длину shift[h(B)]. В противном случае при shift[h(B)] = 0 шаблоны, оканчивающиеся на блок B, проверяются в тексте один за другим. Первым сканируется блок timjn-i+i timjn. Данный метод встроен в команду agrep [10]. | |||
== Применение == |
правка