Connected component: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Connected component''' --- компонента связности. A '''connected component''' of a graph <math>G</math> is a maximal connected subgraph of <ma…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Connected component''' | '''Connected component''' — ''[[компонента связности]].'' | ||
A '''connected component''' of a graph <math>G</math> is a maximal connected subgraph of <math>G</math>. Any two connected components of <math>G</math> are vertex-disjoint and each | A '''connected component''' of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is a maximal [[connected graph|connected]] [[subgraph]] of <math>\,G</math>. Any two connected components of <math>\,G</math> are [[vertex disjoint graphs|vertex-disjoint]] and each [[vertex]] (and [[edge]]) belongs to one of them. Their number is denoted by <math>\,c(G)</math>. | ||
vertex (and edge) belongs to one of them. Their number is denoted by | |||
<math>c(G)</math>. | ==Литература== | ||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 10:48, 24 октября 2018
Connected component — компонента связности.
A connected component of a graph [math]\displaystyle{ \,G }[/math] is a maximal connected subgraph of [math]\displaystyle{ \,G }[/math]. Any two connected components of [math]\displaystyle{ \,G }[/math] are vertex-disjoint and each vertex (and edge) belongs to one of them. Their number is denoted by [math]\displaystyle{ \,c(G) }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.