Connected component: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Connected component''' --- компонента связности. A '''connected component''' of a graph <math>G</math> is a maximal connected subgraph of <ma…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Connected component''' --- компонента связности.  
'''Connected component''' — ''[[компонента связности]].''


A '''connected component''' of a graph <math>G</math> is a maximal connected subgraph of <math>G</math>. Any two connected components of <math>G</math> are vertex-disjoint and each
A '''connected component''' of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is a maximal [[connected graph|connected]] [[subgraph]] of <math>\,G</math>. Any two connected components of <math>\,G</math> are [[vertex disjoint graphs|vertex-disjoint]] and each [[vertex]] (and [[edge]]) belongs to one of them. Their number is denoted by <math>\,c(G)</math>.
vertex (and edge) belongs to one of them. Their number is denoted by
 
<math>c(G)</math>.
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 10:48, 24 октября 2018

Connected componentкомпонента связности.

A connected component of a graph [math]\displaystyle{ \,G }[/math] is a maximal connected subgraph of [math]\displaystyle{ \,G }[/math]. Any two connected components of [math]\displaystyle{ \,G }[/math] are vertex-disjoint and each vertex (and edge) belongs to one of them. Their number is denoted by [math]\displaystyle{ \,c(G) }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.