Аноним

Cocomparability ordering: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''Cocomparability ordering''' --- косравнимое упорядочение. A graph <math>G</math> has a '''cocomparability ordering''' if there exists a …»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Cocomparability ordering''' --- косравнимое  упорядочение.  
'''Cocomparability ordering''' — ''[[косравнимое  упорядочение]].''


A graph <math>G</math> has a '''cocomparability ordering''' if there exists a
A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> has a '''cocomparability ordering''' if there exists a linear order <math>\,<</math> on the set of its [[vertex|vertices]] such that for every choice of vertices <math>\,u, v, w</math> the following property holds
linear order <math><</math> on the set of its vertices such that for every choice
of vertices <math>u, v, w</math> the following property holds


<math>u < v < w \wedge (u,w) \in E \Rightarrow (u,v) \in E \vee (v,w) \in
:::::<math>u < v < w \wedge (u,w) \in E \Rightarrow (u,v) \in E \vee (v,w) \in
E.</math>
E.</math>


A graph is a cocomparability graph if it admits a cocomparability
A graph is a [[cocomparability graph]] if it admits a cocomparability ordering.
ordering.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.