Caterpillar: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Caterpillar''' --- гусеница. '''1.''' A ''tree'' such that the removal of all ''pendant vertices'' or leaves (vertices with exactly one neighbor) yields…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Caterpillar''' | '''Caterpillar''' — ''[[гусеница]].'' | ||
'''1.''' A ''tree'' such that the removal of all ''pendant vertices'' or | '''1.''' A ''[[tree]]'' such that the removal of all ''[[pendant vertex|pendant vertices]]'' or | ||
leaves | [[leaf|leaves]] | ||
(vertices with exactly one neighbor) yields a ''path'' is a '''caterpillar'''. | (vertices with exactly one neighbor) yields a ''[[path]]'' is a '''caterpillar'''. | ||
'''2.''' A '''caterpillar''' is a graph derived from a path by hanging any number | '''2.''' A '''caterpillar''' is a [[graph, undirected graph, nonoriented graph|graph]] derived from a path by hanging any number | ||
of pendant vertices from vertices of the path. | of pendant vertices from [[vertex|vertices]] of the path. | ||
'''3.''' A '''caterpillar''' <math>C</math> is a tree of order <math>n \geq 3</math> whose ''pruned tree'' is a (possibly trivial) path. | '''3.''' A '''caterpillar''' <math>\,C</math> is a tree of order <math>n \geq 3</math> whose ''[[pruned tree]]'' is a (possibly trivial) path. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 10:44, 24 октября 2018
Caterpillar — гусеница.
1. A tree such that the removal of all pendant vertices or leaves (vertices with exactly one neighbor) yields a path is a caterpillar.
2. A caterpillar is a graph derived from a path by hanging any number
of pendant vertices from vertices of the path.
3. A caterpillar [math]\displaystyle{ \,C }[/math] is a tree of order [math]\displaystyle{ n \geq 3 }[/math] whose pruned tree is a (possibly trivial) path.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.