Аноним

P-Critical graph: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''<math>p</math>-Critical graph''' --- <math>p</math>-критический граф. A graph <math>G</math> is '''<math>p</math>-critical''' if <math>G</math> is…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''<math>p</math>-Critical graph''' --- <math>p</math>-критический граф.  
'''<math>\,p</math>-Critical graph''' — ''[[p-Критический граф|<math>\,p</math>-критический граф]].''
A graph <math>G</math> is '''<math>p</math>-critical''' if <math>G</math> is not ''perfect'' but
 
every proper induced subgraph of <math>G</math> is perfect. The celebrated ''Strong Perfect Graph Conjecture'' (SPGC) of C. Berge states that
A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is '''<math>\,p</math>-critical''' if <math>\,G</math> is not ''[[perfect graph|perfect]]'' but every proper [[induced (with vertices) subgraph|induced subgraph]] of <math>\,G</math> is perfect. The celebrated ''[[Strong perfect graph conjecture|Strong Perfect Graph Conjecture]]'' (SPGC) of C. Berge states that <math>\,p</math>-critical graphs are only <math>\,C_{2n+1}</math> and <math>\,C_{2n+1}^{c}</math>, <math>\,n \geq 2</math>.
<math>p</math>-critical graphs are only <math>C_{2n+1}</math> and <math>C_{2n+1}^{c}</math>, <math>n \geq 2</math>.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.