Аноним

Геометрическая протяженность геометрических сетей: различия между версиями

Материал из WEGA
м
мНет описания правки
 
(не показано 5 промежуточных версий этого же участника)
Строка 15: Строка 15:
представляет собой обход, по которому необходимо идти при перемещении по сети G из точки p в точку q, вместо того чтобы пройти напрямую. Здесь |.| обозначает евклидову длину. ''Геометрическая протяженность сети'' G задается соотношением
представляет собой обход, по которому необходимо идти при перемещении по сети G из точки p в точку q, вместо того чтобы пройти напрямую. Здесь |.| обозначает евклидову длину. ''Геометрическая протяженность сети'' G задается соотношением


(2) <math>\delta(G) := sup_{p \ne q \in G} \delta(p, q)</math>.
(2) <math>\delta(G) := sup_{p \ne q \in G} \; \delta(p, q)</math>.




Это определение отличается от понятия коэффициента растяжения, использовавшегося в контексте остовных деревьев; подробнее об этом – в монографиях Эпштейна [6] или Нарасимхана и Смида [11]. В последней рассматриваются только пути между вершинами <math>p, q \in V \;</math>, тогда как понятие геометрической протяженности включает также все точки на ребрах. Следовательно, коэффициент растяжения треугольника T равен 1, однако его геометрическая протяженность задается формулой <math>\delta(T) = \sqrt{2 / (1 - cos \; \alpha)} \ge 2</math>, где <math>\alpha \le 60^\circ \;</math> - самый острый угол T.
Это определение отличается от понятия коэффициента растяжения, использовавшегося в контексте остовных деревьев; подробнее об этом – в монографиях Эпштейна [6] или Нарасимхана и Смида [11]. В последней рассматриваются только пути между вершинами <math>p, q \in V \;</math>, тогда как понятие геометрической протяженности включает также все точки на ребрах. Таким образом, коэффициент растяжения треугольника T равен 1, однако его геометрическая протяженность задается формулой <math>\delta(T) = \sqrt{2 / (1 - cos \; \alpha)} \ge 2</math>, где <math>\alpha \le 60^\circ \;</math> - самый острый угол T.




Пусть дано конечное множество S точек на плоскости. Требуется найти конечную геометрическую сеть, содержащую S, геометрическая протяженность которой насколько возможно мала. Значение
Пусть дано конечное множество S точек на плоскости. Требуется найти конечную геометрическую сеть, содержащую S, геометрическая протяженность которой насколько возможно мала. Значение


<math>\Delta(S) := inf \{ \delta(G); G \;</math> – конечная плоская геометрическая сеть, содержащая S}
<math>\Delta(S) := inf \{ \delta(G); G \;</math> – конечная плоская геометрическая сеть, содержащая <math>S \} \;</math>


называется ''геометрической протяженностью множества точек'' S. Задача заключается в вычислении или ограничении <math>\Delta(S) \;</math> для данного множества S.
называется ''геометрической протяженностью множества точек'' S. Задача заключается в вычислении или ограничении <math>\Delta(S) \;</math> для данного множества S.


== Основные результаты ==
== Основные результаты ==
'''Теорема 1 [4]. Обозначим за <math>S_n \;</math> множество углов правильного n-угольника. Тогда <math>\Delta(S_3) = 2 / \sqrt{3}, \Delta(S_4) = \sqrt{2}, \Delta(S_n) = \pi / 2 \;</math> для всех <math>n \ge 5 \;</math>.'''
'''Теорема 1 [4]. Обозначим за <math>S_n \;</math> множество вершин правильного n-угольника. Тогда <math>\Delta(S_3) = 2 / \sqrt{3}, \Delta(S_4) = \sqrt{2}, \Delta(S_n) = \pi / 2 \;</math> для всех <math>n \ge 5 \;</math>.'''




Строка 35: Строка 35:
[[Файл:GDGN_1.png]]
[[Файл:GDGN_1.png]]


Рисунок 1. Вложения с минимальной протяженностью в регулярные множества точек
Рисунок 1. Вложения с минимальной протяженностью для регулярных множеств точек
   
   


Строка 53: Строка 53:




Для точек, имеющих общее положение, вычисление геометрической протяженности оказывается весьма сложным. Решение этой задачи полностью известно только для множеств S = {A, B, C} величины 3.
Для точек, находящихся в общем положении, вычисление геометрической протяженности оказывается весьма сложным. Решение этой задачи полностью известно только для множеств S = {A, B, C} величины 3.




Строка 67: Строка 67:




Следующий результат задает верхнюю и нижнюю границы A(S).
Следующий результат задает верхнюю и нижнюю границы <math>\Delta (S) \;</math>.




'''Теорема 3 [4]. Для каждого конечного множества точек S выполняется соотношение <math>\Delta(S) < 1.678 \;</math>.'''
'''Теорема 3 [4]. Для каждого конечного множества точек S выполняется соотношение <math>\Delta(S) < 1,678 \;</math>.'''
   
   
Для доказательства верхней границы заменим каждую вершину шестиугольной черепицы <math>\mathbb{R}^2 \;</math> определенной замкнутой кривой Зиндлера (по определению, все пары точек, делящие пополам периметр кривой Зиндлера, находятся на одинаковом расстоянии). В результате получаем сеть <math>G_F \;</math> с геометрической протяженностью, приблизительно равной 1,6778, см. рис. 3. Пусть дано конечное множество точек S. Применим небольшую деформацию к масштабированной версии <math>G_F \;</math>, такую, чтобы все точки S лежали в конечной части, G, деформированного множества. Согласно теореме Дирихле о приближении действительных чисел рациональными, достаточно выполнить деформацию, малую относительно размера ячейки, так что на протяженность она не повлияет. Определение и свойства кривых Зиндлера см. в [8].
Для доказательства верхней границы заменим каждую вершину шестиугольного черепичного разбиения <math>\mathbb{R}^2 \;</math> определенной замкнутой кривой Зиндлера (по определению, все пары точек, делящие пополам периметр кривой Зиндлера, находятся на одинаковом расстоянии). В результате получаем сеть <math>G_F \;</math> с геометрической протяженностью, приблизительно равной 1,6778, см. рис. 3. Пусть дано конечное множество точек S. Применим небольшую деформацию к масштабированной версии <math>G_F \;</math>, такую, чтобы все точки S лежали в конечной части, G, деформированного множества. Согласно теореме Дирихле о приближении действительных чисел рациональными, достаточно выполнить деформацию, малую относительно размера ячейки, так что на протяженность она не повлияет. Определение и свойства кривых Зиндлера см. в [8].




Строка 89: Строка 89:


== Открытые вопросы ==
== Открытые вопросы ==
Для практического применения в дополнение к верхним границам геометрической протяженности пригодились бы верхние границы веса (т.е. общей длины ребер) геометрической сети. Некоторые теоретические вопросы также требуют дополнительного исследования. Всегда ли <math>\Delta(S) \;</math> достигается для конечной сети? Как вычислить (точно или приближенно) <math>\Delta(S) \;</math> для заданного конечного множества S? Чему равняется точное значение sup{<math>\Delta(S) \;</math>; S finite}?
Для практического применения в дополнение к верхним границам геометрической протяженности пригодились бы верхние границы веса (т.е. общей длины ребер) геометрической сети. Некоторые теоретические вопросы также требуют дополнительного исследования. Всегда ли <math>\Delta(S) \;</math> достигается для конечной сети? Как вычислить (точно или приближенно) <math>\Delta(S) \;</math> для заданного конечного множества S? Чему равняется точное значение <math> sup \{ \Delta(S); S \; finite \}</math>?


== См. также ==
== См. также ==
4446

правок