Аноним

Геометрические остовы: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «Ключевые слова и синонимы Протяженность; t-остовы Постановка задачи Рассмотрим множест…»)
 
Нет описания правки
Строка 1: Строка 1:
Ключевые слова и синонимы
== Ключевые слова и синонимы ==
Протяженность; t-остовы
Протяженность; t-остовы


Постановка задачи
== Постановка задачи ==
Рассмотрим множество S из n точек в d-мерном Евклидовом пространстве. Сеть на множестве S может быть смоделирована при помощи неориентированного графа G с множеством вершин S размера n и множеством ребер E, в котором каждое ребро (U, V) имеет вес. Геометрическая (евклидова) сеть представляет собой сеть, в которой весом ребра (u, v) является евклидово расстояние |uv| между его конечными точками. Пусть дано вещественное число t > 1. Мы говорим, что граф G является t-остовом множества S, если для каждой пары точек u, v 2 S существует путь в G с весом, не более чем в t раз превышающим евклидово расстояние между u и v. Минимальное значение t, при котором граф G является t-остовом S, называется коэффициентом растяжения, или протяженностью, G. Более детальное изложение процедуры построения t-остовов можно найти в книге Нарасимхана и Смида [ ]. В данной статье рассматривается построение t-остовов для заданного множества S из n точек в пространстве Rd и положительного вещественного числа t > 1, где d является константой.  
Рассмотрим множество S из n точек в d-мерном Евклидовом пространстве. Сеть на множестве S может быть смоделирована при помощи неориентированного графа G с множеством вершин S размера n и множеством ребер E, в котором каждое ребро (U, V) имеет вес. Геометрическая (евклидова) сеть представляет собой сеть, в которой весом ребра (u, v) является евклидово расстояние |uv| между его конечными точками. Пусть дано вещественное число t > 1. Мы говорим, что граф G является t-остовом множества S, если для каждой пары точек u, v 2 S существует путь в G с весом, не более чем в t раз превышающим евклидово расстояние между u и v. Минимальное значение t, при котором граф G является t-остовом S, называется коэффициентом растяжения, или протяженностью, G. Более детальное изложение процедуры построения t-остовов можно найти в книге Нарасимхана и Смида [ ]. В данной статье рассматривается построение t-остовов для заданного множества S из n точек в пространстве Rd и положительного вещественного числа t > 1, где d является константой.  


Задача заключается в построении хорошего t-остова для S относительно следующих мер качества:
Задача заключается в построении хорошего t-остова для S относительно следующих мер качества:
размер: количество ребер в графе.
размер: количество ребер в графе.
степень: максимальное количество ребер, инцидентных вершине.
степень: максимальное количество ребер, инцидентных вершине.
вес: сумма весов ребер.
вес: сумма весов ребер.
диаметр остова: наименьшее целое число k, такое, что для любой пары вершин u и v из S существует путь в графе между u и v, длиной не более t • \uv\ и содержащий не более k ребер.
диаметр остова: наименьшее целое число k, такое, что для любой пары вершин u и v из S существует путь в графе между u и v, длиной не более t • \uv\ и содержащий не более k ребер.
отказоустойчивость: сохранение работоспособности графа при отказе ребра, вершины или области.
отказоустойчивость: сохранение работоспособности графа при отказе ребра, вершины или области.


Таким образом, хорошие t-остовы должны иметь высокое значение отказоустойчивости и малые размер, степень, вес и диаметр остова.


Основные результаты
Таким образом, качественные t-остовы должны иметь высокое значение отказоустойчивости и малые размер, степень, вес и диаметр остова.
 
== Основные результаты ==
Далее будут изложены три самых распространенных подхода к построению t-остова на множестве точек в евклидовом пространстве, а также приведено описание процесса построения отказоустойчивых остовов и остовов между многоугольными препятствиями; и, наконец, будут вкратце описаны динамические и кинетические остовы.
Далее будут изложены три самых распространенных подхода к построению t-остова на множестве точек в евклидовом пространстве, а также приведено описание процесса построения отказоустойчивых остовов и остовов между многоугольными препятствиями; и, наконец, будут вкратце описаны динамические и кинетические остовы.


Остовы на точках в евклидовом пространстве
Остовы на точках в евклидовом пространстве
Максимально изученными классами t-остовных сетей для точек в евклидовом пространстве являются ©-графы, WSPD-графы и жадные остовы. В следующих разделах будут изложены базовые идеи, лежащие в основе каждого из этих классов, а также приведены известные границы мер качества.
Максимально изученными классами t-остовных сетей для точек в евклидовом пространстве являются ©-графы, WSPD-графы и жадные остовы. В следующих разделах будут изложены базовые идеи, лежащие в основе каждого из этих классов, а также приведены известные границы мер качества.


©-граф
©-граф
©-графы были независимо разработаны в конце 80-х Кларксоном и Кейлом. Основная идея заключалась в независимой обработке каждой точки p 2 S следующим образом. Разобьем Rd на k симплициальных конусов с угловым диаметром не более 9 и вершиной в точке p, где k = O(l/9d~1). К каждому непустому конусу C добавляется ребро, связывающее p и точку в C, ортогональная проекция которой на некоторый фиксированный луч в C, исходящий из p, является максимально близкой к p (см. рис. 1a). Полученный граф называется ©-графом на S.
©-графы были независимо разработаны в конце 80-х Кларксоном и Кейлом. Основная идея заключалась в независимой обработке каждой точки p 2 S следующим образом. Разобьем Rd на k симплициальных конусов с угловым диаметром не более 9 и вершиной в точке p, где k = O(l/9d~1). К каждому непустому конусу C добавляется ребро, связывающее p и точку в C, ортогональная проекция которой на некоторый фиксированный луч в C, исходящий из p, является максимально близкой к p (см. рис. 1a). Полученный граф называется ©-графом на S.


Теорема 1. ©-граф представляет собой t-остов на множестве S для t = 1/ (cos 9 — sin 9), имеющий O{nl9d~l) ребер, и может быть вычислен за время O((n/9d-1)logd~1 n) с использованием O(n/9d-1 + nlogd~2 n) памяти.
Теорема 1. ©-граф представляет собой t-остов на множестве S для t = 1/ (cos 9 — sin 9), имеющий O{nl9d~l) ребер, и может быть вычислен за время O((n/9d-1)logd~1 n) с использованием O(n/9d-1 + nlogd~2 n) памяти.
Следующие варианты ©-графов задают границы на степень, диаметр и вес.
Следующие варианты ©-графов задают границы на степень, диаметр и вес.
   
   
Геометрические остовы, рис. 1
Геометрические остовы, рис. 1
a: ©-граф. b: граф с нерабочей областью
a: ©-граф. b: граф с нерабочей областью


Остовы на базе списков с пропусками
Остовы на базе списков с пропусками
Задача заключается в обобщении понятия списков с пропусками и применения их к построению остовов. Построим последовательность из h подмножеств, S1, S2, ... Sh, где S1 = S, а Si строится из Si-1 следующим образом (напоминающим уровни в списке пропусков). Для каждой точки в S-1 подбросим симметричную монету. Множество Si включает все точки S-1, для которых монета упала лицевой стороной вверх. Процесс построения заканчивается, когда Si = ;. Для каждого подмножества строится ©-граф. Объединение графов представляет собой остов S на базе списков с пропусками, имеющий протяженность t, O(n/9d~1) ребер и диаметр O(log n) с высокой вероятностью [3].
Задача заключается в обобщении понятия списков с пропусками и применения их к построению остовов. Построим последовательность из h подмножеств, S1, S2, ... Sh, где S1 = S, а Si строится из Si-1 следующим образом (напоминающим уровни в списке пропусков). Для каждой точки в S-1 подбросим симметричную монету. Множество Si включает все точки S-1, для которых монета упала лицевой стороной вверх. Процесс построения заканчивается, когда Si = ;. Для каждого подмножества строится ©-граф. Объединение графов представляет собой остов S на базе списков с пропусками, имеющий протяженность t, O(n/9d~1) ребер и диаметр O(log n) с высокой вероятностью [3].


Жадный подход с пробелами
Жадный подход с пробелами
Множество ориентированных ребер удовлетворяет свойству пробелов, если источники любых двух разных ребер разделены расстоянием, по крайней мере в несколько раз превышающим длины кратчайшего из двух ребер. Арья и Смид [5] предложили алгоритм, использующий свойство пробелов для определения того, может ли некоторое ребро быть добавлено к t-остовному графу. Используя свойство пробелов, можно доказать, что построенный остов имеет степень O{ll9d~l) и вес O(log n • wt(MST(S))), где wt(MST(S)) – вес минимального остовного дерева S.
Множество ориентированных ребер удовлетворяет свойству пробелов, если источники любых двух разных ребер разделены расстоянием, по крайней мере в несколько раз превышающим длины кратчайшего из двух ребер. Арья и Смид [5] предложили алгоритм, использующий свойство пробелов для определения того, может ли некоторое ребро быть добавлено к t-остовному графу. Используя свойство пробелов, можно доказать, что построенный остов имеет степень O{ll9d~l) и вес O(log n • wt(MST(S))), где wt(MST(S)) – вес минимального остовного дерева S.


WSPD-граф
WSPD-граф
Пусть A и B – два конечных множества точек в Rd. Будем называть A и B значительно удаленными по отношению к вещественному числу s > 0, если существуют два непересекающихся шара CA и CB одного и того же радиуса, такие, что CA содержит A, CB содержит B, а расстояние между CA и CB по меньшей мере в s раз превышает радиус CA. Значение s называется коэффициентом удаления.
Пусть A и B – два конечных множества точек в Rd. Будем называть A и B значительно удаленными по отношению к вещественному числу s > 0, если существуют два непересекающихся шара CA и CB одного и того же радиуса, такие, что CA содержит A, CB содержит B, а расстояние между CA и CB по меньшей мере в s раз превышает радиус CA. Значение s называется коэффициентом удаления.


Определение 1. Пусть S – множество точек в пространстве Rd, а s > 0 – вещественное число. Декомпозицией значительно удаленных пар (well-separated pair decomposition, WSPD) для S относительно s является последовательность fAi ; Bi g, 1 < i < m, пар непустых подмножеств S, таких, что (1) Ai \ B i = ; для всех i = 1, 2, ... , m; (2) для каждой неориентированной пары {p, q} различных точек S существует ровно одна пара {Ai, Bi} в последовательности, такая, что p 2 Ai и q 2 Bi либо p 2 Bi и q 2 Ai; (3) Ai и Bi являются значительно удаленными относительно s для всех i = 1, 2, ... , m.
Определение 1. Пусть S – множество точек в пространстве Rd, а s > 0 – вещественное число. Декомпозицией значительно удаленных пар (well-separated pair decomposition, WSPD) для S относительно s является последовательность fAi ; Bi g, 1 < i < m, пар непустых подмножеств S, таких, что (1) Ai \ B i = ; для всех i = 1, 2, ... , m; (2) для каждой неориентированной пары {p, q} различных точек S существует ровно одна пара {Ai, Bi} в последовательности, такая, что p 2 Ai и q 2 Bi либо p 2 Bi и q 2 Ai; (3) Ai и Bi являются значительно удаленными относительно s для всех i = 1, 2, ... , m.


Декомпозицию значительно удаленных пар разработали Кэллахан и Косарайю [ ]. Построение t-остова при помощи этого подхода заключается в построении декомпозиции S относительно коэффициента удаления s = (4(t + 1))/(t — 1). Вначале возьмем за остовный граф G = (S; ;) и будем итеративно добавлять ребра следующим образом. Для каждой значительно удаленной пары {A, B} из декомпозиции к графу добавляется ребро (a, b), где a и b – произвольные точки из A и B, соответственно. Полученный граф называется WSPD-графом на S.
Декомпозицию значительно удаленных пар разработали Кэллахан и Косарайю [ ]. Построение t-остова при помощи этого подхода заключается в построении декомпозиции S относительно коэффициента удаления s = (4(t + 1))/(t — 1). Вначале возьмем за остовный граф G = (S; ;) и будем итеративно добавлять ребра следующим образом. Для каждой значительно удаленной пары {A, B} из декомпозиции к графу добавляется ребро (a, b), где a и b – произвольные точки из A и B, соответственно. Полученный граф называется WSPD-графом на S.


Теорема 2. WSPD-граф представляет собой t-остов на множестве S, имеющий O{nl9d~l) ребер, и может быть построен за время O(sdn + и log n), где s = 4(t + 1)/(t — 1).
Теорема 2. WSPD-граф представляет собой t-остов на множестве S, имеющий O{nl9d~l) ребер, и может быть построен за время O(sdn + и log n), где s = 4(t + 1)/(t — 1).


В алгоритм можно внести модификации для получения графа с ограниченным диаметром или ограниченной степенью.
В алгоритм можно внести модификации для получения графа с ограниченным диаметром или ограниченной степенью.


Ограниченный диаметр
Ограниченный диаметр
Арья, Маунт и Смид [3] предложили модификацию алгоритма построения, в результате которой диаметр графа оказывается ограничен 2 log n. Вместо выбора произвольной точки в каждом значительно удаленном множестве их алгоритм тщательно выбирает особую точку для каждого множества.
Арья, Маунт и Смид [3] предложили модификацию алгоритма построения, в результате которой диаметр графа оказывается ограничен 2 log n. Вместо выбора произвольной точки в каждом значительно удаленном множестве их алгоритм тщательно выбирает особую точку для каждого множества.


Ограниченная степень
Ограниченная степень
Одна и та же точка v может быть частью нескольких значительно удаленных пар, и каждая из этих пар может сгенерировать ребро с конечной точкой в v. Арья и др. [ ] предложили алгоритм, сохраняющий только самое короткое ребро для каждого направления конуса, объединив таким образом подход к построению ©-графа с подходом для WSPD-графа. Добавив шаг постобработки, рассматривающий все вершины с высокой степенью, можно получить t-остов степени O(ll{t-l)2d-1).
Одна и та же точка v может быть частью нескольких значительно удаленных пар, и каждая из этих пар может сгенерировать ребро с конечной точкой в v. Арья и др. [ ] предложили алгоритм, сохраняющий только самое короткое ребро для каждого направления конуса, объединив таким образом подход к построению ©-графа с подходом для WSPD-графа. Добавив шаг постобработки, рассматривающий все вершины с высокой степенью, можно получить t-остов степени O(ll{t-l)2d-1).


Жадный остов
Жадный остов
Жадный алгоритм был впервые представлен в 1989 году Берном (см. также работу Ленкопулоса и Лингаса [15]) и с тех пор широко исследовался. Граф, построенный при помощи жадного алгоритма, будем называть жадным остовом. Основная идея заключается в итеративном построении графа G. Ребра полного графа обрабатываются в порядке возрастания длины. Проверка ребра (u, v) включает запрос о кратчайшем пути в частичном остовном графе G. Если кратчайший путь в G между u и v не превышает t • \uv, то ребро (u, v) отбрасывается, в противном случае оно добавляется к частичному остовному графу G.
Жадный алгоритм был впервые представлен в 1989 году Берном (см. также работу Ленкопулоса и Лингаса [15]) и с тех пор широко исследовался. Граф, построенный при помощи жадного алгоритма, будем называть жадным остовом. Основная идея заключается в итеративном построении графа G. Ребра полного графа обрабатываются в порядке возрастания длины. Проверка ребра (u, v) включает запрос о кратчайшем пути в частичном остовном графе G. Если кратчайший путь в G между u и v не превышает t • \uv, то ребро (u, v) отбрасывается, в противном случае оно добавляется к частичному остовному графу G.


Дас, Нарасимхан и Салоу [ ] доказали, что жадный остов удовлетворяет так называемому «свойству прыжков». Множество неориентированных ребер E удовлетворяет свойству t-прыжков, если для любого k > 2 и любой возможной последовательности f(p1; q1)..: ; (pk; qk)g попарно различающихся ребер E,
Дас, Нарасимхан и Салоу [ ] доказали, что жадный остов удовлетворяет так называемому «свойству прыжков». Множество неориентированных ребер E удовлетворяет свойству t-прыжков, если для любого k > 2 и любой возможной последовательности f(p1; q1)..: ; (pk; qk)g попарно различающихся ребер E,


Используя свойство прыжков, можно ограничить вес графа. Дас и Нарасимхан [ ] заметили, что жадный остов можно вычислить приближенно при удовлетворении свойства прыжков. Это наблюдение позволило разработать более быстрые алгоритмы для его построения.
Используя свойство прыжков, можно ограничить вес графа. Дас и Нарасимхан [ ] заметили, что жадный остов можно вычислить приближенно при удовлетворении свойства прыжков. Это наблюдение позволило разработать более быстрые алгоритмы для его построения.


Теорема 3 ([14]). Приближенный жадный t-остов на множестве S, имеющий максимальную степень O(1/(t — l)2d~l) и вес O((1/(t - \)и~1 . wt(MST(S)))), может быть построен за время O(n/((t - 1)2d)log n).
Теорема 3 ([14]). Приближенный жадный t-остов на множестве S, имеющий максимальную степень O(1/(t — l)2d~l) и вес O((1/(t - \)и~1 . wt(MST(S)))), может быть построен за время O(n/((t - 1)2d)log n).


Отказоустойчивые остовы
Отказоустойчивые остовы
Понятие отказоустойчивых остовов было введено Левкопулосом и др. [ ] в 1998 году. Оно означает, что при отказе одной или нескольких вершин либо одного или нескольких ребер остов должен сохранить свои основные свойства. В частности, в том, что осталось от остова после отказа вершин или ребер, по-прежнему должен сохраниться короткий путь между любыми двумя вершинами. Шумай и Чжао [ ] показали, что жадный подход позволяет получить k-вершинный (или k-реберный) отказоустойчивый геометрический t-остов степени O(k) с общим весом O(k2 ■ wt(MST(S))); эти границы являются асимптотически оптимальными.
Понятие отказоустойчивых остовов было введено Левкопулосом и др. [ ] в 1998 году. Оно означает, что при отказе одной или нескольких вершин либо одного или нескольких ребер остов должен сохранить свои основные свойства. В частности, в том, что осталось от остова после отказа вершин или ребер, по-прежнему должен сохраниться короткий путь между любыми двумя вершинами. Шумай и Чжао [ ] показали, что жадный подход позволяет получить k-вершинный (или k-реберный) отказоустойчивый геометрический t-остов степени O(k) с общим весом O(k2 ■ wt(MST(S))); эти границы являются асимптотически оптимальными.


Для геометрических остовов естественно рассматривать отказы областей – то есть отказы, уничтожающие все вершины и ребра, пересекающие некоторую нерабочую геометрическую область. Пусть для нерабочей области F граф G G F представляет собой часть G, оставшуюся после того, как точки из S, находящиеся внутри области F, и все ребра, пересекающие F, были удалены из графа; см. рис. 1b. Абам и др. [1] показали, как строить t-остовы размера O(nlogn), являющиеся отказоустойчивыми при  отказе любой выпуклой области. Если разрешается использовать точки Штейнера, можно получить t-остов линейного размера.
Для геометрических остовов естественно рассматривать отказы областей – то есть отказы, уничтожающие все вершины и ребра, пересекающие некоторую нерабочую геометрическую область. Пусть для нерабочей области F граф G G F представляет собой часть G, оставшуюся после того, как точки из S, находящиеся внутри области F, и все ребра, пересекающие F, были удалены из графа; см. рис. 1b. Абам и др. [1] показали, как строить t-остовы размера O(nlogn), являющиеся отказоустойчивыми при  отказе любой выпуклой области. Если разрешается использовать точки Штейнера, можно получить t-остов линейного размера.


Остовы с многоугольными препятствиями
Остовы с многоугольными препятствиями
Граф видимости на множестве попарно непересекающихся многоугольников называется графом взаимовидимых областей. Каждая многоугольная вершина является вершиной в графе, а каждое ребро представляет видимую связь между ними: если две вершины видят друг друга, между ними строится ребро. Этот граф полезен благодаря тому, что содержит кратчайший путь, огибающий препятствия, между парой любых вершин.
Граф видимости на множестве попарно непересекающихся многоугольников называется графом взаимовидимых областей. Каждая многоугольная вершина является вершиной в графе, а каждое ребро представляет видимую связь между ними: если две вершины видят друг друга, между ними строится ребро. Этот граф полезен благодаря тому, что содержит кратчайший путь, огибающий препятствия, между парой любых вершин.


Дас [9] показал, что t-остов графа видимости для множества точек на евклидовой плоскости можно построить при помощи алгоритма построения ©-графа с последующим этапом усечения. Полученный граф будет иметь линейный размер и константную степень.
Дас [9] показал, что t-остов графа видимости для множества точек на евклидовой плоскости можно построить при помощи алгоритма построения ©-графа с последующим этапом усечения. Полученный граф будет иметь линейный размер и константную степень.


Динамические и кинетические остовы
Динамические и кинетические остовы
О динамических или кинетических остовах известно не так уж много. Арья и др. [ ] предложили структуру данных размера O(n log n), поддерживающую остов на базе списков с пропусками, описанный выше, с ожидаемым амортизированным временем вставки и удаления O(log и log log n) на основе модели случайных обновлений.
О динамических или кинетических остовах известно не так уж много. Арья и др. [ ] предложили структуру данных размера O(n log n), поддерживающую остов на базе списков с пропусками, описанный выше, с ожидаемым амортизированным временем вставки и удаления O(log и log log n) на основе модели случайных обновлений.


Гао и др. [13] показали, как поддерживать t-остов размера O(n/(t-l)d) с максимальной степенью  O(l/(f-2)d logo;) и временем вставки и удаления O((loga)/(f — 1)d), где a обозначает пропорциональность S, т.е. отношение максимального расстояния между парой вершин к минимальному. Алгоритм основан на использовании иерархической структуры T с O(log a) уровнями, каждый уровень которой содержит множество центров (подмножество S). Каждая вершина v на уровне i в структуре T связана ребрами со всеми остальными вершинами уровня i, находящимися на расстоянии не более O(2i/(t — 1)) от v. Полученный граф является t-остовом S и может поддерживаться вышеописанным образом. Этот подход может быть обобщен до кинетического случая таким образом, чтобы количество событий в процессе поддержки остова составляло O(n2 log n) при псевдоалгебраическом характере перемещения. Каждое событие может быть обновлено за время O((loga)/(f - 1)d).
Гао и др. [13] показали, как поддерживать t-остов размера O(n/(t-l)d) с максимальной степенью  O(l/(f-2)d logo;) и временем вставки и удаления O((loga)/(f — 1)d), где a обозначает пропорциональность S, т.е. отношение максимального расстояния между парой вершин к минимальному. Алгоритм основан на использовании иерархической структуры T с O(log a) уровнями, каждый уровень которой содержит множество центров (подмножество S). Каждая вершина v на уровне i в структуре T связана ребрами со всеми остальными вершинами уровня i, находящимися на расстоянии не более O(2i/(t — 1)) от v. Полученный граф является t-остовом S и может поддерживаться вышеописанным образом. Этот подход может быть обобщен до кинетического случая таким образом, чтобы количество событий в процессе поддержки остова составляло O(n2 log n) при псевдоалгебраическом характере перемещения. Каждое событие может быть обновлено за время O((loga)/(f - 1)d).


Применение
== Применение ==
Алгоритмы построения разреженных остовов получили широкое применение в таких областях, как поиск в метрическом пространстве [1], который включает запрос по содержанию в мультимедийных объектах, текстовый информационный поиск, распознавание образов и аппроксимацию функций. Еще одним примером является широковещательная рассылка в сетях коммуникаций [ ]. Несколько хорошо известных теоретических работ также основываются на построении t-остовов – к примеру, Рао и Смит [19] совершили прорыв, предложив схему аппроксимации с оптимальным временем O(nlog n) для хорошо известной евклидовой задачи коммивояжера с использованием t-остовов (или баньянов). А Шумай и Лингас [ ] предложили схемы аппроксимации для задач о многосвязности с нахождением объектов минимальной стоимости в геометрических сетях.
Алгоритмы построения разреженных остовов получили широкое применение в таких областях, как поиск в метрическом пространстве [1], который включает запрос по содержанию в мультимедийных объектах, текстовый информационный поиск, распознавание образов и аппроксимацию функций. Еще одним примером является широковещательная рассылка в сетях коммуникаций [ ]. Несколько хорошо известных теоретических работ также основываются на построении t-остовов – к примеру, Рао и Смит [19] совершили прорыв, предложив схему аппроксимации с оптимальным временем O(nlog n) для хорошо известной евклидовой задачи коммивояжера с использованием t-остовов (или баньянов). А Шумай и Лингас [ ] предложили схемы аппроксимации для задач о многосвязности с нахождением объектов минимальной стоимости в геометрических сетях.


Открытые вопросы
== Открытые вопросы ==
В этой сфере остается много нерешенных задач. Стоит упомянуть некоторые из них:
В этой сфере остается много нерешенных задач. Стоит упомянуть некоторые из них:
1. Разработка алгоритма построения динамического t-остова, который можно обновлять за время O(logc n) для некоторого константного значения c.
1. Разработка алгоритма построения динамического t-остова, который можно обновлять за время O(logc n) для некоторого константного значения c.
2. Определение, существует ли отказоустойчивый t-остов линейного размера для ситуации отказов выпуклых областей.
2. Определение, существует ли отказоустойчивый t-остов линейного размера для ситуации отказов выпуклых областей.
3. Алгоритм построения k-вершинного отказоустойчивого остова, который предложили Шумай и Чжао [8], позволяет получить k-вершинный отказоустойчивый t-остов степени O(k) с общим весом O(k2 ■ wt(MST(S))). Однако до сих пор неизвестны способы его эффективной реализации. Можно ли вычислить такой остов за время O(nlog n + kn)?
3. Алгоритм построения k-вершинного отказоустойчивого остова, который предложили Шумай и Чжао [8], позволяет получить k-вершинный отказоустойчивый t-остов степени O(k) с общим весом O(k2 ■ wt(MST(S))). Однако до сих пор неизвестны способы его эффективной реализации. Можно ли вычислить такой остов за время O(nlog n + kn)?
4. Ограничение веса остовов на базе списков с пропусками.
4. Ограничение веса остовов на базе списков с пропусками.


Экспериментальные результаты
== Экспериментальные результаты ==
Задача построения остовов активно исследовалась с теоретической точки зрения, но получила гораздо меньше внимания с практической, или экспериментальной, стороны. Наварро и Паредес [ ] предложили четыре эвристики для множеств точек в пространстве высоких размерностей (d = 20) и эмпирическими методами показали, что время выполнения составило O(n2.24), а количество ребер в полученных графах – O(n1.13). Недавно Фарши и Гудмундссон [12] провели тщательное сравнение алгоритмов построения остовов, упоминавшихся в разделе «Остовы на точках в евклидовом пространстве».
Задача построения остовов активно исследовалась с теоретической точки зрения, но получила гораздо меньше внимания с практической, или экспериментальной, стороны. Наварро и Паредес [ ] предложили четыре эвристики для множеств точек в пространстве высоких размерностей (d = 20) и эмпирическими методами показали, что время выполнения составило O(n2.24), а количество ребер в полученных графах – O(n1.13). Недавно Фарши и Гудмундссон [12] провели тщательное сравнение алгоритмов построения остовов, упоминавшихся в разделе «Остовы на точках в евклидовом пространстве».


См. также
== См. также ==
Применение геометрических остовных сетей
* [[Применение геометрических остовных сетей]]
Аппроксимация метрических пространств древесными метриками
* [[Аппроксимация метрических пространств древесными метриками]]
Протяженность геометрических сетей
* [[Протяженность геометрических сетей]]
Планарные геометрические остовы
* [[Планарные геометрические остовы]]
Алгоритм поиска кратчайших путей с единственным источником
* [[Алгоритм поиска кратчайших путей с единственным источником]]
Разреженные остовы графов
* [[Разреженные остовы графов]]
Декомпозиция значительно удаленных пар
* [[Декомпозиция значительно удаленных пар]]


Литература
== Литература ==
1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 7-9 January 2007
1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 7-9 January 2007
2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of the 27th ACM Symposium on Theory of Computing, pp. 489-498. Las Vegas, 29 May-1 June 1995
2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of the 27th ACM Symposium on Theory of Computing, pp. 489-498. Las Vegas, 29 May-1 June 1995
3. Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, pp. 703-712. Santa Fe, 20-22 November 1994
3. Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, pp. 703-712. Santa Fe, 20-22 November 1994
4. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of small diameter: Randomized solutions. Comput. Geom. Theor. Appl. 13(2), 91 -107 (1999)
4. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of small diameter: Randomized solutions. Comput. Geom. Theor. Appl. 13(2), 91 -107 (1999)
5. Arya, S., Smid, M.: Efficient construction of a bounded-degree spanner with low weight. Algorithmica 17, 33-54 (1997)
5. Arya, S., Smid, M.: Efficient construction of a bounded-degree spanner with low weight. Algorithmica 17, 33-54 (1997)
6. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42,67-90 (1995)
6. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42,67-90 (1995)
7. Czumaj, A., Lingas, A.: Fast approximation schemes for Euclidean multi-connectivity problems. In: Proceedings of the 27th International Colloquium on Automata, Languages and
7. Czumaj, A., Lingas, A.: Fast approximation schemes for Euclidean multi-connectivity problems. In: Proceedings of the 27th International Colloquium on Automata, Languages and
Programming. Lect. Notes Comput. Sci. 1853,856-868 (2000)
Programming. Lect. Notes Comput. Sci. 1853,856-868 (2000)
8. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom. 32(2), 207-230 (2004)
8. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom. 32(2), 207-230 (2004)
9. Das, G.: The visibility graph contains a bounded-degree spanner. In: Proceedings of the 9th Canadian Conference on Computational Geometry, Kingston, 11-14 August 1997
9. Das, G.: The visibility graph contains a bounded-degree spanner. In: Proceedings of the 9th Canadian Conference on Computational Geometry, Kingston, 11-14 August 1997
10. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7,297-315(1997)
10. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7,297-315(1997)
11. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 215-222. San Francisco, 22-24 January 1995
11. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 215-222. San Francisco, 22-24 January 1995
12. Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. In: Proceedings of the 13th Annual European Symposium on Algorithms. Lect. Notes Comput. Sci. 3669, 556-567 (2005)
12. Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. In: Proceedings of the 13th Annual European Symposium on Algorithms. Lect. Notes Comput. Sci. 3669, 556-567 (2005)
13. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. In: Proceedings of the 20th ACM Symposium on Computational Geometry, pp. 190-199, New York, 9-11 June 2004
13. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. In: Proceedings of the 20th ACM Symposium on Computational Geometry, pp. 190-199, New York, 9-11 June 2004
14. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Improved greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479-1500 (2002)
14. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Improved greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479-1500 (2002)
15. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251-256 (1992)
15. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251-256 (1992)
16. Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32, 144-156(2002)
16. Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32, 144-156(2002)
17. Li, X.Y.: Applications of computational geometry in wireless ad hoc networks. In: Cheng, X.Z., Huang, X., Du, D.Z. (eds.) Ad Hoc Wireless Networking, pp. 197-264. Kluwer, Dordrecht (2003)
17. Li, X.Y.: Applications of computational geometry in wireless ad hoc networks. In: Cheng, X.Z., Huang, X., Du, D.Z. (eds.) Ad Hoc Wireless Networking, pp. 197-264. Kluwer, Dordrecht (2003)
18. Narasimhan, G., Smid, M.: Geometric spanner networks. Cambridge University Press, New York (2006)
18. Narasimhan, G., Smid, M.: Geometric spanner networks. Cambridge University Press, New York (2006)
19. Navarro, G., Paredes, R.: Practical construction of metric t-spanners. In: Proceedings of the 5th Workshop on Algorithm Engineering and Experiments, pp. 69-81, 11 January 2003. SIAM Press, Baltimore
19. Navarro, G., Paredes, R.: Practical construction of metric t-spanners. In: Proceedings of the 5th Workshop on Algorithm Engineering and Experiments, pp. 69-81, 11 January 2003. SIAM Press, Baltimore
20. Rao, S., Smith, W.D.: Approximating geometrical graphs via spanners and banyans. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 540-550. Dallas, 23-26 May 1998
20. Rao, S., Smith, W.D.: Approximating geometrical graphs via spanners and banyans. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 540-550. Dallas, 23-26 May 1998
4551

правка