Аноним

Критический диапазон для беспроводных сетей: различия между версиями

Материал из WEGA
м
Строка 17: Строка 17:


== Основные результаты ==
== Основные результаты ==
Далее будут рассматриваться точки на двумерной плоскости. Пусть <math>X_1, X_2, ... \;</math> – независимые и равномерно распределенные случайные точки в ограниченной области A. Пусть имеется целое положительное число n. Точечным процессом <math>\{ X_1, X_2, ..., X_n \} \;</math> называется равномерный n-точечный процесс над A, обозначаемый <math>\mathcal{X}_n (A) \;</math>. Пусть имеется положительное число <math>\lambda \;</math>. Обозначим за <math>P_0 (\lambda) \;</math> пуассонову случайную переменную с параметром A, независимую от <math>\{ X_1, X_2, ... \; \} </math>. Тогда точечный процесс <math>\{ X_1, X_2, ..., X_{P_o (n)} \} \; </math> представляет собой пуассоновский точечный процесс со средним значением n над A и обозначается <math>\mathcal{P}_n (A) \;</math>. A называется областью развертывания. Событие называется асимптотическим «почти наверное», если оно случается с вероятностью, стремящейся к 1 при <math>n \to \infty \;</math>.
Далее будут рассматриваться точки на двумерной плоскости. Пусть <math>X_1, X_2, ... \;</math> – независимые и равномерно распределенные случайные точки в ограниченной области A. Пусть имеется целое положительное число n. Точечным процессом <math>\{ X_1, X_2, ..., X_n \} \;</math> называется равномерный n-точечный процесс над A, обозначаемый <math>\mathcal{X}_n (A) \;</math>. Пусть имеется положительное число <math>\lambda \;</math>. Обозначим за <math>P_0 (\lambda) \;</math> пуассонову случайную переменную с параметром <math>\lambda \;</math>, независимую от <math>\{ X_1, X_2, ... \; \} </math>. Тогда точечный процесс <math>\{ X_1, X_2, ..., X_{P_o (n)} \} \; </math> представляет собой пуассоновский точечный процесс со средним значением n над A и обозначается <math>\mathcal{P}_n (A) \;</math>. A называется областью развертывания. Событие называется асимптотическим «почти наверное», если оно случается с вероятностью, стремящейся к 1 при <math>n \to \infty \;</math>.


Вершина в графе называется изолированной, если она не имеет соседей. В связном графе изолированных вершин не существует. Асимптотическое распределение количества изолированных вершин задается следующей теоремой [2, 6, 14].
Вершина в графе называется изолированной, если она не имеет соседей. В связном графе изолированных вершин не существует. Асимптотическое распределение количества изолированных вершин задается следующей теоремой [2, 6, 14].
Строка 25: Строка 25:




Согласно этой теореме, вероятность события, заключающегося в том, что в графе нет изолированных вершин, асимптотически равна <math>exp \big( - e^{- \xi} \big) \;</math>. По утверждению теории случайных геометрических графов, в графе нет изолированных вершин, он почти наверное является связным. Из этого следует формулировка теоремы 2 [6, 8, 9].
Согласно этой теореме, вероятность события, заключающегося в том, что в графе нет изолированных вершин, асимптотически равна <math>exp \big( - e^{- \xi} \big) \;</math>. Согласно теории случайных геометрических графов, если в графе нет изолированных вершин, он почти наверное является связным. Из этого следует формулировка теоремы 2 [6, 8, 9].




4430

правок