Аноним

Компоновка схемы: различия между версиями

Материал из WEGA
м
Строка 79: Строка 79:
(2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>,
(2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>,


которая оценивает сверху функцию HPWL с произвольно малой относительной ошибкой, так как <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой
которая оценивает сверху функцию HPWL с произвольно малой относительной ошибкой при <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой


(3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg)  \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg)  \bigg) \bigg] \;</math>.
(3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg)  \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg)  \bigg) \bigg] \;</math>,


где <math>\alpha > 0 \;</math> – параметр сглаживания [6]. Обе аппроксимации можно оптимизировать с использованием метода сопряженных градиентов.
где <math>\alpha > 0 \;</math> – параметр сглаживания [6]. Обе аппроксимации можно оптимизировать с использованием метода сопряженных градиентов.
Строка 93: Строка 93:
'''Распространение под действием силы'''
'''Распространение под действием силы'''


Базовая идея заключается в использовании постоянных по величине сил f, которые «отталкивают» вершины от перекрытий, и перевычислении сил на нескольких итерациях, отражая изменения в распределении вершин. Для квадратичной компоновки новые условия оптимальности выглядят следующим образом: <math>\mathbf{Q} \mathbf{x} + \mathbf{c} + \mathbf{f} = \mathbf{0} \;</math> [8]. Постоянная по величине сила может изменять компоновку различными способами, добиваясь удовлетворения целевых ограничений плотности. Сила '''f''' вычисляется при помощи дискретной версии уравнения Пуассона.
Базовая идея заключается в добавлении постоянных по величине сил f, которые «отталкивают» вершины от перекрытий, и перевычислении сил на нескольких итерациях, отражая изменения в распределении вершин. Для квадратичной компоновки новые условия оптимальности выглядят следующим образом: <math>\mathbf{Q} \mathbf{x} + \mathbf{c} + \mathbf{f} = \mathbf{0} \;</math> [8]. Постоянная по величине сила может изменять компоновку различными способами, добиваясь удовлетворения целевых ограничений плотности. Сила '''f''' вычисляется при помощи дискретной версии уравнения Пуассона.




4551

правка