4559
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 81: | Строка 81: | ||
которое оценивает сверху функцию HPWL с произвольно малой относительной ошибкой, так как <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой | которое оценивает сверху функцию HPWL с произвольно малой относительной ошибкой, так как <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой | ||
(3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg) \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg) \bigg) \bigg] \;</math> | |||
( | |||
где | где <math>\alpha > 0 \;</math> – параметр сглаживания [6]. Обе аппроксимации можно оптимизировать с использованием [[метод сопряженных градиентов|метода сопряженных градиентов]]. | ||
Аналитические техники для целевых ограничений плотности | '''Аналитические техники для целевых ограничений плотности''' | ||
Целевые ограничения плотности являются недифференцируемыми и обычно требуют применения аппроксимации. | Целевые ограничения плотности являются недифференцируемыми и обычно требуют применения аппроксимации. |
правок