Аноним

(t,i,j)-Cover: различия между версиями

Материал из WEGA
нет описания правки
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''<math>(t,i,j)</math>-Cover''' — ''[[(t,i,j)-покрытие|<math>(t,i,j)</math>-покрытие]].''  
'''<math>\,(t,i,j)</math>-Cover''' — ''[[(t,i,j)-покрытие|<math>\,(t,i,j)</math>-покрытие]].''  


Let <math>\,G = (V(G),E(G))</math> be a [[graph, undirected graph, nonoriented graph|graph]]. The set <math>\,S</math> of [[vertex|vertices]] is called a '''<math>\,(t,i,j)</math>-cover''' if every element of <math>\,S</math> belongs to exactly <math>\,i</math> balls of radius <math>\,t</math> centered at elements of <math>\,S</math> and every element of <math>\,V \setminus S</math> belongs to exactly <math>\,j</math> balls of radius <math>\,t</math> centered at elements of <math>\,S</math>.
Let <math>\,G = (V(G),E(G))</math> be a [[graph, undirected graph, nonoriented graph|graph]]. The set <math>\,S</math> of [[vertex|vertices]] is called a '''<math>\,(t,i,j)</math>-cover''' if every element of <math>\,S</math> belongs to exactly <math>\,i</math> balls of radius <math>\,t</math> centered at elements of <math>\,S</math> and every element of <math>\,V \setminus S</math> belongs to exactly <math>\,j</math> balls of radius <math>\,t</math> centered at elements of <math>\,S</math>.