4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
Пусть дан [[полный граф|полный]] [[двудольный граф]] <math>G = (X, | Пусть дан [[полный граф|полный]] [[двудольный граф]] <math>G = (X, Y, X \times Y) \;</math> с присвоенным каждому ребру (x, y) весом w(x, y). [[Паросочетание]] M представляет собой подмножество ребер, такое, что никакие два ребра в M не имеют общей вершины. Паросочетание является [[совершенное паросочетание|совершенным]], если в него входят все вершины. Предположим, что |X| = |Y| = n. Задача поиска паросочетания на взвешенных двудольных графах заключается в нахождении паросочетания с максимальным общим весом, где <math>w(M) = \sum_{e \in M} w(e) \;</math>. Поскольку граф G является полным и двудольным, у него имеется совершенное паросочетание. Алгоритм для решения данной задачи предложили Кун [4] и Манкрес [6]. Будем предполагать, что всех веса ребер неотрицательны. | ||
== Основные результаты == | == Основные результаты == |
правка