4554
правки
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
и | и | ||
<math>\forall x \in X \; \; \; \ell(x) max_{y \in Y} \; w(x, y).</math> | <math>\forall x \in X \; \; \; \ell(x) = max_{y \in Y} \; w(x, y).</math> | ||
Определим подграф равенства, | Определим ''подграф равенства'', <math>G_{ \ell}\;</math>, как остовный подграф G, содержащий все вершины G и только те ребра (x, y), веса которых удовлетворяют условию <math>w(x, y) = \ell(x) + \ell(y) \;</math>. | ||
Строка 24: | Строка 24: | ||
'''Теорема 1. Если подграф равенства | '''Теорема 1. Если подграф равенства, <math>G_{ \ell}\;</math>, содержит совершенное паросочетание M*, то M* является в G паросочетанием с максимальным весом.''' | ||
Строка 32: | Строка 32: | ||
'''Высокоуровневое описание''' | '''Высокоуровневое описание''' | ||
Вышеприведенная теорема служит основой алгоритма нахождения паросочетания с максимальным весом в полном двудольном графе. Начав с допустимой разметки, вычислим подграф равенства и затем найдем максимальное паросочетание в этом подграфе (на этом этапе веса ребер не учитываются). Если найденное паросочетание является совершенным, процесс на этом завершается. В противном случае к подграфу равенства добавляются ребра посредством пересмотра меток вершин. После добавления ребер к подграфу равенства либо увеличивается размер паросочетания (был найден дополняющий путь), либо продолжает расти венгерское дерево. | Вышеприведенная теорема служит основой алгоритма нахождения паросочетания с максимальным весом в полном двудольном графе. Начав с допустимой разметки, вычислим подграф равенства и затем найдем максимальное паросочетание в этом подграфе (на этом этапе веса ребер не учитываются). Если найденное паросочетание является совершенным, процесс на этом завершается. В противном случае к подграфу равенства добавляются ребра посредством пересмотра меток вершин. После добавления ребер к подграфу равенства либо увеличивается размер паросочетания (был найден дополняющий путь), либо продолжает расти [[венгерское дерево]]. В первом случае этот этап процесса завершается и начинается новый (поскольку размер паросочетания вырос). Во втором случае венгерское дерево растет за счет добавления к нему новых вершин, что, очевидно, не может произойти более n раз. | ||
''(Структура венгерского дерева включает исследованные ребра при поиске базисного возможного решения одновременно из всех свободных вершин в S. Когда в T найдена вершина, сопоставленная какой-либо вершине из S, нужно исследовать только соответствующее ребро; однако в S исследуются все ребра, инцидентные этой вершине).'' | |||
Строка 41: | Строка 41: | ||
Стоит отметить свойство данного алгоритма: | Стоит отметить следующее свойство данного алгоритма: | ||
S | |||
правки