Задача присваивания: различия между версиями
Перейти к навигации
Перейти к поиску
Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Паросочетание на взвешенных двудольных графах == Постанов…») |
(нет различий)
|
Версия от 18:46, 1 ноября 2016
Ключевые слова и синонимы
Паросочетание на взвешенных двудольных графах
Постановка задачи
Пусть дан полный двудольный граф G = (X, F, Ix, Y) с присвоенным каждому ребру (x, y) весом w(x, y). Паросочетание M представляет собой подмножество ребер, такое, что никакие два ребра в M не имеют общей вершины. Паросочетание является совершенным, если в него входят все вершины. Предположим, что |X| = |Y| = n. Задача поиска паросочетания на взвешенных двудольных графах заключается в нахождении паросочетания с максимальным общим весом, где w(M) = Pe2M w(e). Поскольку граф G является полным и двудольным, у него имеется совершенное паросочетание. Алгоритм для решения данной задачи предложили Кун [4] и Манкрес [6]. Будем предполагать, что всех веса ребер неотрицательны.