4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 44: | Строка 44: | ||
== Основные результаты == | == Основные результаты == | ||
Теорема 1 (Арнборг и др. [1]). Пусть даны граф G и целое число k. Задача определения того факта, что древесная ширина графа G не превышает k, является недетерминированной и имеет полиномиальное время выполнения (является NP-полной). | '''Теорема 1 (Арнборг и др. [1]). Пусть даны граф G и целое число k. Задача определения того факта, что древесная ширина графа G не превышает k, является недетерминированной и имеет полиномиальное время выполнения (является NP-полной).''' | ||
Во многих вариантах применения древесной ширины и древесной декомпозиции графа исключительно важен случай, когда k предполагается фиксированной константой. Арнборг и др. [1] в 1987 году предложили алгоритм решения этой задачи за время O( | Во многих вариантах применения древесной ширины и древесной декомпозиции графа исключительно важен случай, когда k предполагается фиксированной константой. Арнборг и др. [1] в 1987 году предложили алгоритм решения этой задачи за время <math>O(n^{k+2}) \;</math>. Было разработано несколько более быстрых алгоритмов для решения задачи при фиксированном значении k; обзор этих алгоритмов см, например, в [6]. | ||
Теорема 2 (Бодлендер [4]). Для каждого фиксированного значения k существует алгоритм, который для заданного графа G = (V, E) и целочисленного k может определить, верно ли, что древесная ширина G не превышает k, и в случае положительного ответа предложить древесную декомпозицию G с шириной не более k за время O(n). | '''Теорема 2 (Бодлендер [4]). Для каждого фиксированного значения k существует алгоритм, который для заданного графа G = (V, E) и целочисленного k может определить, верно ли, что древесная ширина G не превышает k, и в случае положительного ответа предложить древесную декомпозицию G с шириной не более k за время O(n).''' | ||
Строка 56: | Строка 56: | ||
Для поиска древесной ширины часто используются две эвристики – минимального заполнения и минимальной степени. При применении эвристики минимальной степени выбирается вершина v с минимальной степенью. Граф | Для поиска древесной ширины часто используются две эвристики – минимального заполнения и минимальной степени. При применении эвристики минимальной степени выбирается вершина v с минимальной степенью. Граф G' строится в результате превращения окрестности вершины v в клику и последующего удаления вершины v и инцидентных ей дуг. Хордальный суперграф H' графа G' вычисляется рекурсивным образом при помощи эвристики. Затем строится хордальный суперграф H графа G в результате добавления вершины v и инцидентных ей дуг из G в H'. Эвристика минимального заполнения работает сходным образом, однако в данном случае выбирается такая вершина v, чтобы количество ребер, добавляемых для превращения ее окрестности в клику, было минимально возможным. | ||
Теорема 3 (Фомин и др. [9]). Существует алгоритм, который для данного графа G = (V, E) определяет его древесную ширину и находит его древесную декомпозицию минимальной ширины за время O(1 | '''Теорема 3 (Фомин и др. [9]). Существует алгоритм, который для данного графа G = (V, E) определяет его древесную ширину и находит его древесную декомпозицию минимальной ширины за время <math>O(1,8899^n) \;</math>.''' | ||
Бушитте и Тодинка [8] показали, что древесная ширина может быть вычислена за полиномиальное время для графов, имеющих полиномиальное число минимальных сепараторов. На этой основе были разработаны алгоритмы с полиномиальным временем выполнения для нескольких классов графов – таких как перестановочные графы или слабо триангулированные графы. | Бушитте и Тодинка [8] показали, что древесная ширина может быть вычислена за полиномиальное время для графов, имеющих полиномиальное число минимальных сепараторов. На этой основе были разработаны алгоритмы с полиномиальным временем выполнения для нескольких классов графов – таких как перестановочные графы или слабо триангулированные графы. | ||
== Применение == | == Применение == |
правка