Аноним

Прямолинейное остовное дерево: различия между версиями

Материал из WEGA
м
Строка 6: Строка 6:
Пусть дано множество из n точек на плоскости. [[Остовное дерево]] представляет собой множество ребер, соединяющее все точки и не содержащее циклов. Если каждому ребру приписан вес при помощи некоторой метрики, связанной с расстоянием между инцидентными точками, то ''метрическим минимальным остовным деревом'' будет [[минимальное остовное дерево]] (МОД) с минимальной суммой этих весов. Если используется евклидово расстояние <math>(L_2) \;</math>, такое дерево называется ''евклидовым МОД''; если расстояние по прямой <math>(L_1) \;</math>, то мы имеем дело с ''прямолинейным МОД''.
Пусть дано множество из n точек на плоскости. [[Остовное дерево]] представляет собой множество ребер, соединяющее все точки и не содержащее циклов. Если каждому ребру приписан вес при помощи некоторой метрики, связанной с расстоянием между инцидентными точками, то ''метрическим минимальным остовным деревом'' будет [[минимальное остовное дерево]] (МОД) с минимальной суммой этих весов. Если используется евклидово расстояние <math>(L_2) \;</math>, такое дерево называется ''евклидовым МОД''; если расстояние по прямой <math>(L_1) \;</math>, то мы имеем дело с ''прямолинейным МОД''.


 
Минимальные остовные деревья на взвешенных графах хорошо изучены. Обычный подход к построению метрического МОД заключается в определении [[взвешенный граф|взвешенного графа]] на множестве точек и затем в построении на его основе остовного дерева.
Минимальные остовные деревья на взвешенных графах хорошо изучены. Обычный подход к построению метрического МОД заключается в определении [[взвешенный граф|взвешенного графа]] на множестве точек и затем в построении остовного дерева для него.




4430

правок