4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
Даже для более высоких размерностей, т.е. при d > 2, MST представляет собой подграф двойственной диаграммы Вороного; однако этот факт нельзя использовать тем же способом, как в случае двух измерений, поскольку эта двойственная диаграмма может содержать | Даже для более высоких размерностей, т.е. при d > 2, MST представляет собой подграф двойственной диаграммы Вороного; однако этот факт нельзя использовать тем же способом, как в случае двух измерений, поскольку эта двойственная диаграмма может содержать <math>\Omega (n^2) \;</math> ребер. Следовательно, в случае более высоких размерностей для сокращения количества рассматриваемых ребер нужно использовать другие геометрические свойства. Первый алгоритм для высоких размерностей с временем исполнения ниже квадратичного был предложен Яо [14]. Более эффективный алгоритм позднее предложили Агарвал и коллеги [1]. Для случая <math>d = 3 \;</math> их алгоритм выполняется за рандомизированное ожидаемое время <math>O((n \; log n)^{4/3}) \;</math>, а для <math>d \ge 4 \;</math> – за ожидаемое время <math>O(n^{2-2/( \left \lceil d/2 \right \rceil + 1) + \epsilon } ) \;</math>, где <math>\epsilon \;</math> – произвольно малая положительная константа. | ||
Строка 48: | Строка 48: | ||
Теорема. В модели алгебраического дерева вычислений для любой фиксированной Lp-метрики и любого фиксированного количества размерностей вычисление MST имеет ту же временную сложность в наихудшем случае, с поправкой на константный множитель, что и вычисление бихроматической пары ближайших точек. Кроме того, в трехмерном пространстве с метриками L1 и L1 задача MST, также как и вычисление бихроматической пары ближайших точек, требуют оптимального времени вычисления O(n log n). | Теорема. В модели алгебраического дерева вычислений для любой фиксированной Lp-метрики и любого фиксированного количества размерностей вычисление MST имеет ту же временную сложность в наихудшем случае, с поправкой на константный множитель, что и вычисление бихроматической пары ближайших точек. Кроме того, в трехмерном пространстве с метриками L1 и L1 задача MST, также как и вычисление бихроматической пары ближайших точек, требуют оптимального времени вычисления O(n log n). | ||
== Приближенные и динамические решения == | == Приближенные и динамические решения == |
правка