Аноним

Дерево максимальной совместимости: различия между версиями

Материал из WEGA
м
мНет описания правки
Строка 14: Строка 14:


== Нотация ==
== Нотация ==
Деревья, которые здесь рассматриваются, представляют собой эволюционные (филогенетические) деревья. Такое дерево T имеет множество листьев L(T), находящихся во взаимно-однозначном соответствии с множеством меток, и является либо корневым (в этом случае все внутренние вершины имеют не менее двух потомков), либо некорневым (в этом случае внутренние вершины имеют степень не ниже трех). Размером |T| дерева T является число его листьев. Пусть дано множество меток L и дерево T; [[топологическое ограничение|[топологическое] ограничение]] T согласно L, обозначаемое T|L, представляет собой дерево, полученное следующим образом: взять наименьший порожденный подграф T, соединяющий листья с метками из <math>L \cap L(T) \;</math>, а затем удалить две некорневых вершины любой степени, чтобы дерево стало гомеоморфно неприводимым. Два дерева T и T' являются [[изоморфизм|изоморфными]] (T = T') в том и только том случае, если существует [[изоморфизм графов]] T 7! T0, сохраняющий метки листьев (и корень, если оба дерева были корневыми). Дерево T ''уточняет'' дерево T' (<math>T \trianglerighteq T' \;</math>), если T может быть преобразовано в T путем коллапсирования некоторых его внутренних ребер (под коллапсированием ребра понимается его удаление и слияние его конечных точек). На рис. 1 приведены примеры таких отношений между деревьями.
Деревья, которые здесь рассматриваются, представляют собой эволюционные (филогенетические) деревья. Такое дерево T имеет множество листьев L(T), находящихся во взаимно-однозначном соответствии с множеством меток, и является либо корневым (в этом случае все внутренние вершины имеют не менее двух потомков), либо некорневым (в этом случае внутренние вершины имеют степень не ниже трех). Размером |T| дерева T является число его листьев. Пусть дано множество меток L и дерево T; [[топологическое ограничение|[топологическое] ограничение]] T согласно L, обозначаемое T|L, представляет собой дерево, полученное следующим образом: взять наименьший порожденный подграф T, соединяющий листья с метками из <math>L \cap L(T) \;</math>, а затем удалить две некорневых вершины любой степени, чтобы дерево стало гомеоморфно неприводимым. Два дерева T и T' являются [[изоморфизм|изоморфными]] (T = T') в том и только том случае, если существует [[изоморфизм графов]] <math>T \mapsto T' \;</math>, сохраняющий метки листьев (и корень, если оба дерева были корневыми). Дерево T ''уточняет'' дерево T' (<math>T \trianglerighteq T' \;</math>), если T может быть преобразовано в T путем ''коллапсирования'' некоторых его внутренних ребер (под коллапсированием ребра понимается его удаление и слияние его конечных точек). На рис. 1 приведены примеры таких отношений между деревьями.




Отметим, что дерево T, должным образом уточняющее дерево T0, согласуется со всей эволюционной историей T0, но при этом содержит дополнительную информацию, отсутствующую в T0: по меньшей мере одна вершина высокой степени из T заменяется в T несколькими вершинами меньших степеней, следовательно, T содержит больше событий видообразования, чем T0. Пусть имеется набор T = {T1, T2, ... : : Tk} входных деревьев с идентичными множествами листьев L. Мы говорим, что дерево T с листьями из L совместимо с T в том и только том случае, если 8Ti 2 T, T D TijL(T). Если существует дерево T, совместимое с T, такое, что L(T) = L, то набор T называется совместимым. Для решения вопроса, является ли набор деревьев совместимым, давно известны линейные алгоритмы (см., например, в [8]). Задача нахождения дерева максимальной совместимости представляет собой вариант естественной оптимизации данной задачи, позволяющий обрабатывать наборы несовместимых деревьев.
Отметим, что дерево T, должным образом уточняющее дерево T', согласуется со всей эволюционной историей T', но при этом содержит дополнительную информацию, отсутствующую в T': по меньшей мере одна вершина высокой степени из T заменяется в T несколькими вершинами меньших степеней, следовательно, T содержит больше событий видообразования, чем T'. Пусть имеется набор <math>\mathcal{T} = {T_1, T_2, ..., T_k} \;</math> входных деревьев с идентичными множествами листьев L. Мы говорим, что дерево T с листьями из L ''совместимо'' с <math>\mathcal{T} \;</math> в том и только том случае, если <math>\forall \mathcal{T}_i \in \mathcal{T}, T \trianglerighteq T_i|L(T) \;</math>. Если существует дерево T, совместимое с T, такое, что L(T) = L, то набор T называется совместимым. Для решения вопроса, является ли набор деревьев совместимым, давно известны линейные алгоритмы (см., например, в [8]). Задача нахождения дерева максимальной совместимости представляет собой вариант естественной оптимизации данной задачи, позволяющий обрабатывать наборы несовместимых деревьев.




4446

правок