Аноним

Евклидова задача коммивояжера: различия между версиями

Материал из WEGA
Строка 45: Строка 45:
Основная идея алгоритмов Ароры и Митчелла достаточно проста, но детали анализа оказываются очень сложными. Оба алгоритма используют один и тот же подход. Во-первых, необходимо доказать так называемую [[структурная теорема|структурную теорему]]. Она демонстрирует, что существует <math>(1 + \epsilon) \; </math>-аппроксимация с некоторыми локальными свойствами. В случае евклидовой задачи коммивояжера существует разбиение пространства при помощи кваддерева, содержащее все точки, такие, что каждая ячейка кваддерева пересекается во время пути не более чем константное число раз и только в некоторых заранее определенных местоположениях. После доказательства структурной теоремы необходимо использовать динамическое программирование для нахождения оптимального (или близкого к оптимальному) решения, которое подчиняется локальным свойствам, обозначенным в структурной теореме.
Основная идея алгоритмов Ароры и Митчелла достаточно проста, но детали анализа оказываются очень сложными. Оба алгоритма используют один и тот же подход. Во-первых, необходимо доказать так называемую [[структурная теорема|структурную теорему]]. Она демонстрирует, что существует <math>(1 + \epsilon) \; </math>-аппроксимация с некоторыми локальными свойствами. В случае евклидовой задачи коммивояжера существует разбиение пространства при помощи кваддерева, содержащее все точки, такие, что каждая ячейка кваддерева пересекается во время пути не более чем константное число раз и только в некоторых заранее определенных местоположениях. После доказательства структурной теоремы необходимо использовать динамическое программирование для нахождения оптимального (или близкого к оптимальному) решения, которое подчиняется локальным свойствам, обозначенным в структурной теореме.


Исходные алгоритмы, представленные в первой версии [1], представленной на конференции, и в раннем варианте [13], имели время исполнения в форме <math>O(n^{1/ \epsilon})</math>, что позволяло получить <math>(1 + \epsilon ) \; </math>-аппроксимацию; впоследствии оно было улучшено. В частности, рандомизированный алгоритм Ароры [1] исполняется за время <math>O(n(log \; n)^{1/ \epsilon})</math>; он может быть дерандомизирован, в силу чего время увеличится на <math>O(n) \; </math>. Результат теоремы 3 также может быть распространен на более высокие размерности. Арора демонстрирует следующий результат.
Исходные алгоритмы, представленные в первой версии [1], представленной на конференции, и в раннем варианте [13], имели время исполнения в форме <math>O(n^{1/ \epsilon})</math>, что позволяло получить <math>(1 + \epsilon ) \; </math>-аппроксимацию; впоследствии оно было улучшено. В частности, рандомизированный алгоритм Ароры [1] исполняется за время <math>O(n(log \; n)^{1/ \epsilon})</math>; он может быть дерандомизирован, в силу чего время увеличится на <math>O(n) \; </math>. Теорема 3 также может быть распространена на более высокие размерности. Арора демонстрирует следующий результат.




4551

правка