4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 14: | Строка 14: | ||
Для заданного множества S точек в евклидовом пространстве <math>\mathbb{R} ^d</math>, для целого <math>d \ge 2 \; </math>, [[евклидов граф]] ([[евклидова сеть|сеть]]) представляет собой граф G = (S, E), где E – множество прямолинейных сегментов, соединяющих пары точек из S. Если все пары точек в S соединены дугами из E, то G называется [[полный евклидов граф|полным евклидовым графом]] на S. Стоимость графа равна сумме стоимостей дуг графа: <math>cost(G) = \sum{(x, y) \in E} \delta (x, y)</math> | Для заданного множества S точек в евклидовом пространстве <math>\mathbb{R} ^d</math>, для целого <math>d \ge 2 \; </math>, [[евклидов граф]] ([[евклидова сеть|сеть]]) представляет собой граф G = (S, E), где E – множество прямолинейных сегментов, соединяющих пары точек из S. Если все пары точек в S соединены дугами из E, то G называется [[полный евклидов граф|полным евклидовым графом]] на S. Стоимость графа равна сумме стоимостей дуг графа: <math>cost(G) = \sum{(x, y) \in E} \delta (x, y)</math> | ||
[[схема аппроксимации с полиномиальным временем исполнения|Схема аппроксимации с полиномиальным временем исполнения]] (PTAS) представляет собой семейство алгоритмов | [[схема аппроксимации с полиномиальным временем исполнения|Схема аппроксимации с полиномиальным временем исполнения]] (PTAS) представляет собой семейство алгоритмов <math> \big\{ A_{\epsilon} \big\} </math>, такое, что для каждого фиксированного <math>\epsilon > 0 \; </math> алгоритм <math>A_{\epsilon} </math> исполняется за время, полиномиальное относительно размера входного графа, и дает <math>(1 + \epsilon)</math>-аппроксимацию. | ||
== Родственные работы == | == Родственные работы == |
правка