Complement of a graph, complementary graph — различия между версиями

Материал из WikiGrapp
Перейти к:навигация, поиск
(Новая страница: «'''Complement of a graph, complementary graph''' --- дополнение графа. The '''complementary graph''' <math>\bar{G} = (V, \bar{E})</math> of a graph …»)
 
 
Строка 1: Строка 1:
'''Complement of a graph, complementary graph''' --- дополнение графа.  
+
'''Complement of a graph, complementary graph''' — ''[[дополнение графа]].''
  
The '''complementary graph''' <math>\bar{G} = (V, \bar{E})</math> of a graph <math>G = (V,E)</math> is
+
The '''complementary graph''' <math>\bar{G} = (V, \bar{E})</math> of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G = (V,E)</math> is defined by <math>\bar{E} = \{(x,y): x,y \in V\mbox{ and }x \neq y\mbox{ and }(x,y) \not \in E\}</math>.
defined by <math>\bar{E} = \{(x,y): x,y \in V\mbox{ and }x \neq y\mbox{ and
 
}(x,y) \not \in E\}</math>.
 
  
Given a simple digraph <math>G</math>, the simple digraph <math>\bar{G}</math> is defined by
+
Given a [[simple graph|simple]] digraph <math>\,G</math>, the simple [[digraph]] <math>\bar{G}</math> is defined by
  
 
<math> \begin{array}{l} V(\bar{G}) = V(G), \\
 
<math> \begin{array}{l} V(\bar{G}) = V(G), \\
  
E(\bar{G}) = V(G) \times V(G) - E(G).
+
E(\bar{G}) = V(G) \times V(G) - E(G). \end{array}</math>
\end{array}</math>
+
 
 +
==Литература==
 +
 
 +
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия на 13:20, 5 ноября 2014

Complement of a graph, complementary graphдополнение графа.

The complementary graph \bar{G} = (V, \bar{E}) of a graph \,G = (V,E) is defined by \bar{E} = \{(x,y): x,y \in V\mbox{ and }x \neq y\mbox{ and }(x,y) \not \in E\}.

Given a simple digraph \,G, the simple digraph \bar{G} is defined by

 \begin{array}{l} V(\bar{G}) = V(G), \\

E(\bar{G}) = V(G) \times V(G) - E(G). \end{array}

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.