Compact closed class of graphs

Материал из WikiGrapp
Версия от 14:23, 1 октября 2014; KEV (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к:навигация, поиск

Compact closed class of graphsкомпактно замкнутый класс графов.

A class \,{\mathcal C} of graphs is said to be compact closed if, whenever a graph \,G is such that each of its finite subgraphs is contained in a finite induced subgraph of \,G which belongs to the class \,{\mathcal C}, the graph \,G itself belongs to \,{\mathcal C}. We will say that a class \,{\mathcal C} of graphs is dually compact closed if, for every infinite \,G \in {\mathcal C}, each finite subgraph of \,G is contained in a finite induced subgraph of \,G which belongs to \,{\mathcal C}.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.