Compact closed class of graphs

Материал из WikiGrapp
Версия от 16:10, 9 марта 2011; Glk (обсуждение | вклад) (Новая страница: «'''Compact closed class of graphs''' --- компактно замкнутый класс графов. A class <math>{\mathcal C}</math> of graphs is said to be '…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к:навигация, поиск

Compact closed class of graphs --- компактно замкнутый класс графов.

A class {\mathcal C} of graphs is said to be compact closed if, whenever a graph G is such that each of its finite subgraphs is contained in a finite induced subgraph of G which belongs to the class {\mathcal C}, the graph G itself belongs to {\mathcal C}. We will say that a class {\mathcal C} of graphs is dually compact closed if, for every infinite G \in {\mathcal C}, each finite subgraph of G is contained in a finite induced subgraph of G which belongs to {\mathcal C}.