Center vertex — различия между версиями
Материал из WikiGrapp
Glk (обсуждение | вклад) (Новая страница: «'''Center vertex''' --- центральная вершина. A vertex <math>v</math> in a connected graph <math>G</math> is called a '''center (central) vertex''…») |
KEV (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Center vertex''' | + | '''Center vertex''' — [[центральная вершина]]. |
− | A vertex <math>v</math> in a connected graph <math>G</math> is called a '''center (central) vertex''' if <math>e(v) = rad(G)</math>. A subgraph induced by central | + | A [[vertex]] <math>v</math> in a [[connected graph]] <math>G</math> is called a '''center (central) vertex''' if <math>e(v) = rad(G)</math>. A [[subgraph]] induced by central |
vertices of <math>G</math> is called the '''center''' <math>C(G)</math> of <math>G</math>. It was | vertices of <math>G</math> is called the '''center''' <math>C(G)</math> of <math>G</math>. It was | ||
− | proved that the center of every graph <math>H</math> is contained in a block (a | + | proved that the center of every [[graph, undirected graph, nonoriented graph|graph]] <math>H</math> is contained in a block (a |
maximal 2-connected subgraph) of <math>H</math>. | maximal 2-connected subgraph) of <math>H</math>. | ||
+ | |||
+ | ==Литература== | ||
+ | |||
+ | * Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия на 12:01, 1 ноября 2012
Center vertex — центральная вершина.
A vertex in a connected graph
is called a center (central) vertex if
. A subgraph induced by central
vertices of
is called the center
of
. It was
proved that the center of every graph
is contained in a block (a
maximal 2-connected subgraph) of
.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.