Cactus — различия между версиями

Материал из WikiGrapp
Перейти к:навигация, поиск
(Новая страница: «'''Cactus''' --- кактус, дерево Хусими. A graph <math>G</math> is a '''сactus''' if every its edge is a part of at most one cycle in <math>G</ma…»)
 
 
Строка 1: Строка 1:
'''Cactus''' --- кактус, дерево Хусими.  
+
'''Cactus''' — ''[[кактус]], [[дерево Хусими]].''
  
A graph <math>G</math> is a '''сactus''' if every its edge is a part of at most one cycle in <math>G</math>.
+
A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is a '''сactus''' if every its [[edge]] is a part of at most one [[cycle]] in <math>\,G</math>.
Cactus graphs are ''outerplanar'' since they cannot contain <math>K_{4}</math>
+
Cactus graphs are ''[[outerplanar graph|outerplanar]]'' since they cannot contain <math>\,K_{4}</math>
or <math>K_{2,3}</math> as a ''minor''. Cactus graphs have treewidth <math>\leq 2</math>.
+
or <math>\,K_{2,3}</math> as a ''[[minor of a graph|minor]]''. Cactus graphs have [[treewidth of a graph|treewidth]] <math>\leq 2</math>.
 +
 
 +
==Литература==
 +
 
 +
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия на 11:22, 24 апреля 2012

Cactusкактус, дерево Хусими.

A graph \,G is a сactus if every its edge is a part of at most one cycle in \,G. Cactus graphs are outerplanar since they cannot contain \,K_{4} or \,K_{2,3} as a minor. Cactus graphs have treewidth \leq 2.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.