Arbitrarily vertex decomposable graph — различия между версиями
Материал из WikiGrapp
Glk (обсуждение | вклад) (Новая страница: «'''Arbitrarily vertex decomposable graph''' --- произвольно вершинно разложимый граф. A graph <math>G</math> of order <math>n</mat…») |
KEV (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Arbitrarily vertex decomposable graph''' | + | '''Arbitrarily vertex decomposable graph''' — ''[[произвольно вершинно разложимый граф]].'' |
− | вершинно разложимый граф. | ||
− | A graph <math>G</math> of order <math>n</math> is said to be '''arbitrarily vertex | + | A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> of order <math>\,n</math> is said to be '''arbitrarily vertex decomposable''', if for each sequence <math>(n_{1}, \ldots, n_{k})</math> of positive integers such that <math>n_{1} + \ldots + n_{k} = n</math> there exists |
− | decomposable''', if for each sequence <math>(n_{1}, \ldots, n_{k})</math> of | + | a partition <math>(V_{1}, \ldots, V_{k})</math> of the [[vertex]] set of <math>\,G</math> such |
− | positive integers such that <math>n_{1} + \ldots + n_{k} = n</math> there exists | + | that, for each <math>i \in \{1, \ldots, k\}</math>, <math>V_{i}</math> induces a [[connected graph|connected]] [[subgraph]] of <math>\,G</math> on <math>\,n_{i}</math> vertices. |
− | a partition <math>(V_{1}, \ldots, V_{k})</math> of the vertex set of <math>G</math> such | ||
− | that, for each <math>i \in \{1, \ldots, k\}</math>, <math>V_{i}</math> induces a connected | ||
− | subgraph of <math>G</math> on <math>n_{i}</math> vertices. | ||
==See also== | ==See also== | ||
− | *''Admissible sequence''. | + | * ''[[Admissible sequence]]''. |
Текущая версия на 11:24, 5 декабря 2011
Arbitrarily vertex decomposable graph — произвольно вершинно разложимый граф.
A graph of order
is said to be arbitrarily vertex decomposable, if for each sequence
of positive integers such that
there exists
a partition
of the vertex set of
such
that, for each
,
induces a connected subgraph of
on
vertices.