(k,g)-Cage — различия между версиями
Материал из WikiGrapp
Glk (обсуждение | вклад) (Новая страница: «'''<math>(k,g)</math>-Cage''' --- <math>(k,g)</math>-клетка. For a given ordered pair of integers <math>(k,g)</math>, with <math>k \geq 2</math> and <math>g …») |
KEV (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''<math>(k,g)</math>-Cage''' - | + | '''<math>\,(k,g)</math>-Cage''' — ''[[(k,g)-Клетка|<math>\,(k,g)</math>-клетка]].'' |
− | For a given ordered pair of integers <math>(k,g)</math>, with <math>k \geq 2</math> and <math>g | + | For a given ordered pair of integers <math>\,(k,g)</math>, with <math>k \geq 2</math> and <math>g |
− | \geq 3</math>, a <math>k</math>-regular graph with the smallest cycle length, or girth, | + | \geq 3</math>, a <math>\,k</math>-[[regular graph]] with the smallest [[cycle]] length, or girth, |
− | equal to <math>g</math> is said to be a <math>(k,g)</math>-graph. A '''<math>(k,g)</math>-cage''' is a | + | equal to <math>\,g</math> is said to be a <math>\,(k,g)</math>-graph. A '''<math>\,(k,g)</math>-cage''' is a |
− | <math>(k,g)</math>-graph having the least number, <math>f(k,g)</math>, of vertices. We call | + | <math>\,(k,g)</math>-graph having the least number, <math>\,f(k,g)</math>, of [[vertex|vertices]]. We call |
− | <math>f(k,g)</math> the ''' cage number''' of a <math>(k,g)</math>-graph. One readily | + | <math>\,f(k,g)</math> the '''[[cage number]]''' of a <math>\,(k,g)</math>-graph. One readily |
− | observes that <math>(2,g)</math>-cages are cycles of length <math>g</math>, and | + | observes that <math>\,(2,g)</math>-cages are cycles of length <math>\,g</math>, and |
− | <math>(k,3)</math>-cages are complete graphs of order <math>k+1</math>. | + | <math>\,(k,3)</math>-cages are [[complete graph|complete graphs]] of order <math>\,k+1</math>. |
− | The unique (3,7)-cage known as the '''McGee graph''' is an example of | + | The unique <math>\,(3,7)</math>-cage known as the '''[[McGee graph]]''' is an example of |
− | a cage that is not transitive. It has 24 vertices and its automorphism | + | a cage that is not transitive. It has <math>\,24</math> vertices and its automorphism group has order <math>\,32</math>. |
− | group has order 32. | + | |
+ | ==Литература== | ||
+ | |||
+ | * Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия на 11:50, 24 апреля 2012
-Cage —
-клетка.
For a given ordered pair of integers , with
and
, a
-regular graph with the smallest cycle length, or girth,
equal to
is said to be a
-graph. A
-cage is a
-graph having the least number,
, of vertices. We call
the cage number of a
-graph. One readily
observes that
-cages are cycles of length
, and
-cages are complete graphs of order
.
The unique -cage known as the McGee graph is an example of
a cage that is not transitive. It has
vertices and its automorphism group has order
.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.