Индуктивный граф — различия между версиями

Материал из WikiGrapp
Перейти к:навигация, поиск
(Создана новая страница размером '''Индуктивный граф''' (''Inductive graph'') - орграф, в котором каждый путь <math>\mu = [x_{1}, \...)
 
 
(не показана 1 промежуточная версия этого же участника)
Строка 1: Строка 1:
'''Индуктивный граф''' (''Inductive graph'') -
+
'''Индуктивный граф''' (''[[Inductive graph]]'') — [[орграф]], в котором каждый [[путь]] <math>\mu = [x_{1}, \, x_{2}, \, \ldots ]</math> допускает мажоранту, т.е.  если для каждого пути
орграф, в котором каждый путь <math>\mu = [x_{1}, \, x_{2}, \, \ldots ]</math>
+
<math>\,\mu</math> существует такая [[вершина]] <math>\,z</math>, что <math>z \geq x_{i}, \quad x_{i} \in \mu</math>.
допускает мажоранту, т.е.  если для каждого пути
 
<math>\mu</math> существует такая вершина <math>z</math>, что <math>z \geq x_{i}, \quad x_{i} \in
 
\mu</math>.
 
 
==Литература==
 
==Литература==
[Берж]
+
* Берж К. Теория графов и ее применения. — М.: Изд-во иностр. лит., 1962.

Текущая версия на 16:04, 22 февраля 2011

Индуктивный граф (Inductive graph) — орграф, в котором каждый путь \mu = [x_{1}, \, x_{2}, \, \ldots ] допускает мажоранту, т.е. если для каждого пути \,\mu существует такая вершина \,z, что z \geq x_{i}, \quad x_{i} \in \mu.

Литература

  • Берж К. Теория графов и ее применения. — М.: Изд-во иностр. лит., 1962.