Total restrained dominating set
Материал из WikiGrapp
Total restrained dominating set --- тотальное ограниченное доминирующее множество.
For a graph [math]\displaystyle{ G = (V,E) }[/math], a set [math]\displaystyle{ D \subseteq V(G) }[/math] is a total restrained dominating set, if it is a dominating set and both [math]\displaystyle{ \langle D \rangle }[/math] and [math]\displaystyle{ \langle V(G) - D \rangle }[/math] are isolate free.