Аноним

Cyclic graph: различия между версиями

Материал из WikiGrapp
нет описания правки
(Новая страница: «'''Cyclic graph''' --- циклический граф. The '''cyclic graph''' <math>C(n,k)</math> have a point set <math>V = \{0,1, \ldots,n-1\}</math> and lines …»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Cyclic graph''' --- циклический граф.  
'''Cyclic graph''' — ''[[циклический граф]]''.  


The '''cyclic graph''' <math>C(n,k)</math> have a point set <math>V = \{0,1,
The '''cyclic graph''' <math>\,C(n,k)</math> have a point set <math>\,V = \{0,1,\ldots,n-1\}</math> and lines <math>\,\{i,i+1\}\pmod{n}</math> and <math>\,\{i,i+k\}\pmod{n}</math>
\ldots,n-1\}</math> and lines <math>\{i,i+1\}\pmod{n}</math> and <math>\{i,i+k\}\pmod{n}</math>
(<math>\,i = 1,\ldots,n</math>), where <math>\,k</math> is an integer with <math>\,2 \leq k \leq n-2</math>. If <math>\,G(n,k)</math> is a ''[[circulant graph]]'', then <math>\,C(n,k) \simeq G(n,S)</math> with <math>\,S = \{1, \ldots,\min\{k,n-k\}\}</math>. The [[graph, undirected graph, nonoriented graph|graph]] <math>\,C(n,k)</math> are point-transitive <math>\,3</math>-regular if <math>\,n = 2k</math>, and <math>\,4</math>-regular otherwise.
(<math>i = 1,\ldots,n</math>), where <math>k</math> is an integer with <math>2 \leq k \leq n-2</math>.
 
If <math>G(n,k)</math> is a ''circulant graph'', then <math>C(n,k) \simeq G(n,S)</math> with
==Литература==
<math>S = \{1, \ldots,\min\{k,n-k\}\}</math>. The graphs <math>C(n,k)</math> are
 
point-transitive 3-regular if <math>n = 2k</math>, and 4-regular otherwise.
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.