Аноним

K-Connected graph: различия между версиями

Материал из WikiGrapp
нет описания правки
(Новая страница: «'''<math>k</math>-Connected graph''' --- <math>k</math>-связный граф. A graph <math>G</math> is '''<math>k</math>-connected''' if there exist <math>k</m…»)
 
Нет описания правки
Строка 1: Строка 1:
'''<math>k</math>-Connected graph''' --- <math>k</math>-связный граф.  
'''<math>\,k</math>-Connected graph''' — ''[[k-Связный граф|<math>\,k</math>-связный граф]].''


A graph <math>G</math> is '''<math>k</math>-connected''' if there exist <math>k</math> internally
A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is '''<math>\,k</math>-connected''' if there exist <math>\,k</math> internally node-disjoint chains between every pair of distinct nodes in <math>\,G</math>. A <math>\,k</math>-connected graph <math>\,G</math> is '''minimal''' if for any [[edge]] <math>\,e \in E</math>, <math>\,G - e</math> is not <math>\,k</math>-connected. Usually, [[2-Connected graph|<math>\,2</math>-connected graphs]] are called ''biconnected graphs'' and <math>\,3</math>-connected graphs are called '''triconnected graphs'''.
node-disjoint chains between every pair of distinct nodes in <math>G</math>. A
 
<math>k</math>-connected graph <math>G</math> is '''minimal''' if for any edge <math>e \in E</math>,
==Литература==
<math>G - e</math> is not <math>k</math>-connected. Usually, 2-connected graphs are called
 
''biconnected graphs'' and 3-connected graphs are called '''triconnected graphs'''.
* Евстигнеев В.А., Касьянов В.Н. Слhttp://pco.iis.nsk.su/wiki/skins/common/images/cyrl/button_link.pngоварь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.