Аноним

Compact closed class of graphs: различия между версиями

Материал из WikiGrapp
нет описания правки
(Новая страница: «'''Compact closed class of graphs''' --- компактно замкнутый класс графов. A class <math>{\mathcal C}</math> of graphs is said to be '…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Compact closed class of graphs''' --- компактно замкнутый класс графов.  
'''Compact closed class of graphs''' — ''[[компактно замкнутый класс графов]].''


A class <math>{\mathcal C}</math> of graphs is said to be '''compact closed''' if,
A class <math>\,{\mathcal C}</math> of [[graph, undirected graph, nonoriented graph|graphs]] is said to be '''compact closed''' if, whenever a graph <math>\,G</math> is such that each of its  [[finite graph|finite]] [[subgraph|subgraphs]] is contained in a finite [[induced (with vertices) subgraph|induced subgraph]] of <math>\,G</math> which belongs to the class <math>\,{\mathcal C}</math>, the graph <math>\,G</math> itself belongs to <math>\,{\mathcal C}</math>. We will say that a class <math>\,{\mathcal C}</math> of graphs is '''dually compact closed''' if, for every infinite <math>\,G \in {\mathcal C}</math>, each finite subgraph of <math>\,G</math> is contained in a finite induced subgraph of <math>\,G</math> which belongs to <math>\,{\mathcal C}</math>.
whenever a graph <math>G</math> is such that each of its  finite subgraphs is
 
contained in a finite induced subgraph of <math>G</math> which belongs to the
==Литература==
class <math>{\mathcal C}</math>, the graph <math>G</math> itself belongs to <math>{\mathcal C}</math>. We will say that a class <math>{\mathcal C}</math> of graphs is '''dually compact closed''' if, for every infinite <math>G \in {\mathcal C}</math>, each finite subgraph
 
of <math>G</math> is contained in a finite induced subgraph of <math>G</math> which belongs
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.
to <math>{\mathcal C}</math>.