Аноним

T-Code (in a graph): различия между версиями

Материал из WikiGrapp
нет описания правки
(Новая страница: «'''<math>t</math>-Code (in a graph)''' --- <math>t</math>-код (в графе). A set <math>C \subseteq V(G)</math> is a '''<math>t</math>-code''' in <math>G</ma…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''<math>t</math>-Code (in a graph)''' --- <math>t</math>-код (в графе).  
'''<math>\,t</math>-Code (in a graph)''' — [[t-Код (в графе)|<math>\,t</math>-код (в графе)]].  


A set <math>C \subseteq V(G)</math> is a '''<math>t</math>-code''' in <math>G</math> if <math>d(u,v) \geq
A set <math>C \subseteq V(G)</math> is a '''<math>\,t</math>-code''' in <math>\,G</math> if <math>d(u,v) \geq 2t+1</math> for any two distinct [[vertex|vertices]] <math>\,u,v \in C</math>; <math>\,t</math>-codes are known as ''[[2-Packing of a graph|<math>\,2t</math>-packings]]''. In addition, <math>\,C</math> is called a '''[[t-Perfect code|<math>\,t</math>-perfect code]]''' if for any <math>u \in V(G)</math> there is exactly one <math>v \in C</math> such that
2t+1</math> for any two distinct vertices <math>u,v \in C</math>; <math>t</math>-codes are known
<math>d(u,v) \leq t</math>; 1-perfect codes are also called '''[[efficient dominating set|efficient dominating sets]]'''.
as ''<math>2t</math>-packings''. In addition, <math>C</math> is called a '''<math>t</math>-perfect
code''' if for any <math>u \in V(G)</math> there is exactly one <math>v \in C</math> such that
<math>d(u,v) \leq t</math>; 1-perfect codes are also called '''efficient dominating sets'''.


A set <math>C \subseteq V(G)</math> is a 1-perfect code if and only if the
A set <math>C \subseteq V(G)</math> is a 1-perfect code if and only if the ''[[closed neighbourhood|closed neighbourhoods]]'' of its elements form a partition of <math>\,V(G)</math>.
''closed neigbourhoods'' of its elements form a partition of <math>V(G)</math>.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.