Аноним

Bandwidth: различия между версиями

Материал из WikiGrapp
нет описания правки
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Bandwidth''' — ''[[ширина полосы]].''  
'''Bandwidth''' — ''[[ширина полосы]].''  


Let <math>G = (V,E)</math> be a [[simple graph]]
Let <math>\,G = (V,E)</math> be a [[simple graph]]
and let <math>f</math> be a numbering of [[vertex|vertices]] of <math>G</math>.
and let <math>\,f</math> be a numbering of [[vertex|vertices]] of <math>\,G</math>.




<math>B(G,f) = \max_{(u,v) \in E} |f(u) - f(v)|</math>
<math>B(G,f) = \max_{(u,v) \in E} |f(u) - f(v)|</math>


is called the '''bandwidth''' of the numbering <math>f</math>.
is called the '''bandwidth''' of the numbering <math>\,f</math>.


The '''bandwidth''' of <math>G</math>, denoted
The '''bandwidth''' of <math>\,G</math>, denoted
<math>B(G)</math>, is defined to be the minimum bandwidth of numberings of <math>G</math>.
<math>\,B(G)</math>, is defined to be the minimum bandwidth of numberings of <math>\,G</math>.


The bandwidth problem for graphs has attracted many graph theorists
The bandwidth problem for graphs has attracted many graph theorists