Аноним

Antiprism: различия между версиями

Материал из WikiGrapp
нет описания правки
(Новая страница: «'''Antiprism''' --- антипризма. The '''antiprism''' <math>A_{n}</math>, <math>n \geq 3</math>, is the plane regular graph of degree 4 (an Archimedean co…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Antiprism''' --- антипризма.   
'''Antiprism''' — ''[[антипризма]].''  


The '''antiprism''' <math>A_{n}</math>, <math>n \geq 3</math>,
The '''antiprism''' <math>\,A_{n}</math>, <math>n \geq 3</math>, is the [[plane graph|plane]] [[regular graph]] of [[degree of a graph|degree]] 4 (an Archimedean convex  polytope).
is the plane regular graph of degree 4 (an Archimedean convex  polytope).
In particular, <math>\,A_{3}</math> is the octahedron.
In particular, <math>A_{3}</math> is the octahedron.


The '''<math>k</math>-antiprism''' is the 4-regular plane graph consisting of two
The '''<math>\,k</math>-antiprism''' is the 4-regular plane graph consisting of two
<math>k</math>-gons and <math>2k</math> triangles such that every vertex  is  incident  with
<math>\,k</math>-gons and <math>\,2k</math> [[triangle|triangles]] such that every [[vertex]] is  incident  with
three triangles and one <math>k</math>-gon.
three triangles and one <math>\,k</math>-gon.