Convex dominating set
Материал из WikiGrapp
Convex dominating set --- выпуклое доминирующее множество.
A set [math]\displaystyle{ X \subseteq V(G) }[/math] is convex in [math]\displaystyle{ G }[/math] if vertices from all [math]\displaystyle{ (a-b) }[/math]-geodesics belong to [math]\displaystyle{ X }[/math] for any two vertices [math]\displaystyle{ a,b \in X }[/math]. A set [math]\displaystyle{ X }[/math] is a convex dominating set if it is convex and dominating. The convex domination number [math]\displaystyle{ \gamma_{con}(G) }[/math] of a graph [math]\displaystyle{ G }[/math] is the minimum cardinality of a convex dominating set in [math]\displaystyle{ G }[/math].