Weakly-connected dominating set: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Новая страница: «'''Weakly-connected dominating set''' --- слабо связное доминирующее множество.   A ''' weakly-connected dominating set''', <math>{\…»)  | 
				Glk (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 3: | Строка 3: | ||
A ''' weakly-connected dominating set''', <math>{\mathcal W}</math>, of a graph <math>G</math> is  | A ''' weakly-connected dominating set''', <math>{\mathcal W}</math>, of a graph <math>G</math> is  | ||
a   | a dominating set such that the subgraph consisting of <math>V(G)</math> and all  | ||
edges incident with vertices in <math>{\mathcal W}</math> is connected. Define the  | edges incident with vertices in <math>{\mathcal W}</math> is connected. Define the  | ||
minimum cardinality of all weakly-connected dominating sets of <math>G</math> as  | minimum cardinality of all weakly-connected dominating sets of <math>G</math> as  | ||
the ''' weakly-connected domination number''' of <math>G</math> and denote this  | the ''' weakly-connected domination number''' of <math>G</math> and denote this  | ||
by <math>\gamma_{w}(G)</math>.  | by <math>\gamma_{w}(G)</math>.  | ||
Текущая версия от 07:35, 30 августа 2011
Weakly-connected dominating set --- слабо связное доминирующее множество.
A weakly-connected dominating set, [math]\displaystyle{ {\mathcal W} }[/math], of a graph [math]\displaystyle{ G }[/math] is a dominating set such that the subgraph consisting of [math]\displaystyle{ V(G) }[/math] and all edges incident with vertices in [math]\displaystyle{ {\mathcal W} }[/math] is connected. Define the minimum cardinality of all weakly-connected dominating sets of [math]\displaystyle{ G }[/math] as the weakly-connected domination number of [math]\displaystyle{ G }[/math] and denote this by [math]\displaystyle{ \gamma_{w}(G) }[/math].